
Cellular redox homeostasis determined by a combi-

nation of redox processes and activity of systems control-

ling their balance is considered as an important factor

ensuring cell viability. Many biochemical processes in

aerobic organisms are associated with the generation of

active oxygen intermediates, such as superoxide anion-

radical (О�
2 ), hydroxyl radical (·OH), hydrogen peroxide

(H2O2), singlet oxygen (1O2), which have been termed

reactive oxygen species (ROS) [1-4].

Modulation of intracellular ROS levels is essential in

maintaining cellular homeostasis. At low and intermedi-

ate concentrations, ROS can act as signaling molecules to

maintain cell proliferation and differentiation, bioener-

getic processes, and apoptosis, as well as participate in the

cell stress response via regulation of redox-dependent sig-

naling [4]. Changes in the intracellular ROS levels under-

lie redox-dependent regulation of gene expression by

controlling the activity of transcription factors, such as

Nrf2, AP-1, NF-κB, HIF-1, and p53 [3, 4].

On the other hand, ROS exhibit deleterious genotox-

ic and cytotoxic effects related to their high activity. To

prevent the damaging effect of ROS and to maintain cel-

lular homeostasis, aerobic organisms have developed in

the evolution a system for the antioxidant defense. The

key antioxidant enzymes of this system are catalase,

superoxide dismutase (SOD), and glutathione peroxidase

(GPx) [3]. The antioxidant system neutralizes ROS and

maintains cell homeostasis. It was also demonstrated that

its components cooperatively interact with the enzymes

involved in the metabolism and detoxification of xenobi-

otics [5].

However, various endogenous and exogenous factors

can shift the cell redox balance via either suppression of

the antioxidant system activity or hyperproduction of

ROS, which might lead to the emergence of the oxida-

tive/nitrosative stress and subsequent development of var-

ious pathologies including atherosclerosis, ischemic heart

disease, diabetes, chronic obstructive pulmonary diseases

(COPD), Alzheimer’s and Parkinson diseases, and malig-

nant tumors [1, 3].

An important role in the maintenance of redox

homeostasis belongs to the redox-dependent proteins of

the thioredoxin, glutaredoxin, and peroxiredoxin enzyme
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systems that control the redox state of the cell through the

-SН    -S–S- exchange [6-8].

The dynamic balance between protein glutathionyla-

tion and deglutathionylation (protein-SSG protein-SH)

is an important marker of the oxidative stress, because it

characterizes the cell protection against oxidation of SH-

groups of Cys residues. In this case, the tissue specificity

of expression of genes encoding antioxidant enzymes is

very important [8].

At present, redox-dependent regulation of cellular

homeostasis is considered as a multi-level process that

involves not only proteins and enzyme complexes, but also

non-coding RNAs [3, 9], i.e., a large group of untranslat-

ed RNAs participating in the transcriptional and post-

transcriptional mechanisms of RNA-directed gene silenc-

ing [9, 10]. This group, which includes transport RNAs

(tRNAs), ribosomal RNAs (rRNA), small nuclear RNAs

(snRNAs), small nucleolar RNAs (snoRNAs), antisense

RNAs (aRNAs), small interfering RNAs (siRNAs), Piwi-

interacting RNA (piRNAs), long non-coding RNAs

(lncRNA), and microRNAs (miRNA), plays a significant

role in the regulation of cell redox status [9, 11, 12].

This review summarizes recent data on the role of

miRNAs in the regulation of cell redox-dependent

processes.

BIOGENESIS AND FUNCTIONS OF miRNAs

The discovery of RNA-directed suppression of gene

expression (gene silencing, RNA interference) with the

involvement of miRNAs allowed researchers to suggest a

new role of RNA in cell metabolism and regulation of

genome function. By October 2018, the number of

miRNAs with different functions in the specialized data-

base miRBase (http://mirbase.org) supported by the

Manchester University reached 38,589.

miRNAs are non-coding single-stranded RNA mole-

cules 16 to 27 nucleotides (nt) in length (mostly, 22-24 nt).

They can be present in the blood serum as extracellular

miRNAs from damaged tissues and as circulating

miRNAs in the content of microvesicles and in complex-

es with RNA-binding protein (high-density lipoproteins)

[13]. miRNAs cause transcriptional and post-transcrip-

tional gene silencing. Transcriptional gene silencing is

usually mediated through methylation of the silenced

gene (according to some data, methylation of cytosines in

promoter regions) and changes in histone structure (usu-

ally, caused by methylation and deacetylation). In both

post-transcriptional and transcriptional gene silencing,

miRNA and the bound Argonaute protein (endonucle-

ase) form the polyprotein RISC (RNA-induced silencing

complex) and RITS (RNA-induced transcriptional

silencing complex) [14].

As a rule, miRNAs are not completely homologous

to their targets (mRNA or DNA); the same miRNA can

act on several targets, which differentiates it from siRNAs

that are strictly complementary to their targets. This is

related to the fact that siRNAs target heterologous genes

from which they are transcribed. According to some data,

partial or complete homology to the target mRNA deter-

mines either termination of mRNA translation or mRNA

degradation, respectively [14, 15].

miRNAs can be encoded by specific genes, gene

fragments (both exons and introns), and genome inter-

genic regions [14].

The canonical pathway of miRNA biogenesis starts

with the synthesis of pri-miRNA (several thousand

nucleotides in size) transcribed from DNA, usually by

RNA polymerase II (Fig. 1). pri-miRNA is capped and

polyadenylated similarly to mRNA. Due to the presence

of inverted repeats (self-complementary regions), pri-

miRNAs form a stem-loop structure. In the nucleus, this

structure is cleaved by the proteins Drosha (RNase III)

and Pasha (or its mammalian analog DGCR8) with the

production of pre-miRNA (~70 nt). Pre-miRNA is trans-

ported to the cytoplasm with the help of exportin-5 pro-

tein. Exportin-5 binds to pre-miRNA in the presence of

high levels of RAN-GTP in the nucleus and transfers it

through the nuclear pore complex to the cytoplasm,

where pre-miRNA is released from the RAN/GTP/

exportin-5 complex after GTP hydrolysis. Free exportin-

5 reenters the nucleus [15, 16].

Due to the presence of sticky 3′-end, pre-miRNA

binds in the cytoplasm to the triple protein complex

formed by Dicer (ribonuclease III), TRBP (RNA-bind-

ing protein), and Ago2 (Argonaute family protein with

the endonuclease activity) [17]. During biogenesis of

some miRNAs, Ago2 participates in the formation of spe-

cific mature miRNA precursor consisting of a shortened

hairpin bound to a fragment of ~11-12 nt by cleaving a

bond in the 3′-arm. The precursor is transformed into the

single-stranded miRNA of ~20 nt by Dicer [15, 17]. The

other complementary (passenger) strand of pre-miRNA

dissociates and gets degraded. Experiments with mice

lacking the DICER gene indicated an extremely impor-

tant role of this protein in the miRNA maturation,

although in the case of RNA interference, the effect of

Dicer was less pronounced [18, 19].

After formation of the single-stranded miRNA,

Dicer and TRBP are separated, while Ago2 complex with

the mature miRNA forms RISC or RITS complex by

recruiting other proteins [17].

miRNA in the RISC complex binds to its the target.

In the majority of cases, miRNAs suppress translation by

binding to the 3′-UTR of the mRNA target [14].

However, they can also interact with other mRNA

regions, including 5′-UTRs and exons [20]. 

Further stages depend on the complementation

between miRNA in the content of RISC and target

mRNA. In the case of incomplete complementation,

translation of the mRNA target is repressed, while full

↓↑

↓↑
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complementation results in mRNA hydrolysis by Ago2

[15].

The above-described pathway of miRNA biogenesis

with participation of Drosha, Pasha, exportin-5, and

Dicer is considered to be canonical. However, numerous

studies have demonstrated the existence of alternative

pathways of the miRNA synthesis and maturation. Thus,

it is found that activities of some miRNAs were not

affected by the knockdown of the DICER, XPO5, or AGO2

genes [21].

Fig. 1. Biogenesis of miRNAs and influence of ROS. RAN is a small GTPase from the family of RAS-like GTPases that provides coupling of

the transfer to the GTP hydrolysis; TRBP is an RNA-binding protein; Ago2 is a endonuclease from the Argonaute family; RISC (miRNA-

induced silencing complex) is a complex of Ago2 with a mature miRNA single chain and other proteins; 5′- and 3′-UTR are mRNA 5′- and

3′-untranslated regions, respectively.
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miRNAs AND INTRACELLULAR ROS.

CONTROL OF REDOX HOMEOSTASIS

AND DEVELOPMENT OF OXIDATIVE STRESS

It has been commonly established that oxidative

stress alters expression of many miRNAs (Fig. 1).

However, many researchers believe that changes in the

redox-dependent processes and their relations with the

mechanisms of oxidative stress development have been

studied insufficiently [11].

Redox-dependent regulation of miRNA biogenesis.

One of the possible redox-dependent mechanisms of

miRNA regulation is downregulation of the endonuclease

activity of Dicer (ribonuclease III) responsible for the

processing of pre-miRNAs. In chronic hypoxia, the level

of the DICER gene transcription, stability of the corre-

sponding mRNA, and the content of the Dicer protein

itself are reduced, leading to the suppression of expres-

sion of certain miRNAs [22]. Thus, a considerable

decrease in the Dicer level was observed under hypoxic

conditions in the breast cancer cell line [18]; similar

results have been obtained in other cell lines, i.e., the

effect of hypoxia was not limited to tumor cells.

Treatment of cells with inhibitors of HIF (hypoxia-

induced factors) hydroxylases also led to the decrease in

the Dicer content. At the same time, a decrease in the

content of HIF-1α and HIF-2α virtually did not influ-

ence the amount of Dicer in the cell. Supposedly, the

influence of hypoxia on Dicer (and on the levels of

miRNAs through it) is not mediated by HIF but rather

characterizes the development of adaptive response to

stress. The same conclusion was made by Ho et al. [22]

and Wiesen et al. [23], who demonstrated that the activi-

ty of Dicer decreased under the action of various stress

factors, including ROS.

It was shown that the activity of Dicer in rat

microvascular epithelium cells was suppressed by the

hydrogen peroxide-induced oxidative stress, leading to

the dysregulation of miRNA maturation [24]. Sulfo-

raphane and resveratrol esters (Nrf2 inducers of plant ori-

gin) upregulated DICER expression in the same cells.

Identification of the ARE (antioxidant-responsive ele-

ment)-binding sequence in the 5′-flanking region of

human and mouse DICER genes led to the conclusion

that redox-dependent signaling (including Nrf2/ARE-

dependent pathway) plays an important role in the regu-

lation of miRNA biosynthesis [25].

miRNA biogenesis can be also redox-regulated via

changes in the activity of the endonuclease Drosha, in

particular, through the action of the redox-dependent

enzyme glycogen synthase kinase that phosphorylates

Drosha at Ser300 and Ser302, thus promoting its translo-

cation to the nucleus [26].

Cleavage of miRNAs precursors can also be regulat-

ed in a redox-dependent manner. Thus, activation of the

transmembrane serine/threonine protein kinase and

endoribonuclease IRE1α that hydrolyzes miRNA precur-

sors at the sites different from the sites of hydrolysis by

Dicer by the endoplasmic reticulum (ER) stress caused by

accumulation of unfolded proteins, leads to the decrease

in the levels of miR-17, miR-34a, miR-96, and miR-

125b. This induces activation of caspase-2 mRNA trans-

lation with subsequent apoptosis development [27].

Moreover, miRNAs themselves can be directly oxidized

by ROS, which alters their stability, structure, and ability

to bind to target mRNAs [28].

miRNA and redox regulation of antioxidant and ROS-

producing systems. Multiple studies demonstrate not only

effects of ROS and oxidative stress on miRNAs and their

expression but also the influence of miRNA on redox-

dependent signaling and enzymes of ROS generation and

of antioxidant defense (Fig. 2 and table). Some miRNAs

(so-called redox miRs) participate in cell response to

ROS and oxidative stress, in particular, via changing the

expression of genes encoding antioxidant enzymes (SOD,

catalase, peroxiredoxin, glutathione transferase) [29].

The impact of ROS on the miRNA expression can be

different depending on the cell type and experimental

conditions. Thus, both increase and decrease in the

expression caused by the oxidative stress have been

described for miR-1, miR-133, miR-182, miR-20a,

miR-26a, miR-29b, miR-30b, and miR-30d, depending

on the type of human or rat tissue [9].

Using the TargetScanB database and special soft-

ware, Engedal et al. predicted that some miRNAs partic-

ipate in the oxidative stress development and described

ROS influence on the miRNA synthesis [11]. This

allowed to suggest that miR-15a/b, miR-106a/b, miR-

20a, and miR-195 might be involved in the oxidative

stress development. Later, the levels of these miRNAs

were shown to change in the cells subjected to stress-

induced aging associated with the development of oxida-

tive stress [30]. Using this method, the authors classified

more than 20 miRNAs as potential participants of the cell

response to oxidative stress. Experimental data obtained

for six of these miRNAs (miR-9, miR-16, miR-29b,

miR-128, miR-144, and miR-200c) confirmed their par-

ticipation in the cell response to oxidative stress [11].

miRNAs that affect expression of the antioxidant

enzymes, leading to the oxidative stress aggravation, have

been identified. At the same time, ROS induce miRNAs

that control expression of genes encoding key antioxidant

enzymes, e.g., miR-146a and miR-335 (target – Mn-

superoxide dismutase 2, SOD2), miR-206 (target –

Cu,Zn-superoxide dismutase 1, SOD1), miR-30b (target –

catalase), and miR-181a (target – glutathione peroxi-

dase, isoform GPx1) [31-33]. Upregulation of miR-146a,

miR-30b, and miR-181a promotes oxidative stress [9].

SOD catalyzes dismutation of superoxide (O2
−) with

the formation of less reactive H2O2 that is then reduced to

H2O by catalase and glutathione peroxidase [3]. SOD iso-

forms can be targets for miRNAs. Thus, miR-206 binding
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to the SOD1 mRNA induces ROS accumulation both in

vitro and in vivo, which might be a cause of cardiovascu-

lar diseases, in particular, atrial fibrillation [34]. SOD2

mRNA is a target for miR-21-5p, miR-23a-3p, and miR-

222-3p, which can be potentially used as biomarkers for

predicting heart failure [35].

Some miRNAs (e.g., miR-27a-5p, miR-575, miR-

24-3p, miR-143-3p, miR-9, and miR-204-5p) play an

important role in the regulation of expression of glu-

tathione peroxidase family members [36]. Application of

bioinformatics approaches allowed to predict over 100

miRNAs capable of interacting with the 3′-UTRs in

mRNAs of glutathione peroxidases. Note that some

miRNAs can bind to mRNAs of several glutathione per-

oxidase isoforms. Thus, miR-146b-5p can regulate trans-

lation of Gpx3 and Gpx6 mRNA [36].

The influence of miRNAs on mRNAs of the thiore-

doxin family redox-dependent enzymes promotes the

antioxidant protective effect of the latter (Fig. 2a). Thus,

the action of miR-200c targeting peroxiredoxin 2 (Prx2)

and miR-26a-5p and miR-23b-3p, both targeting peroxi-

redoxin 3 (Prx3) leads to the reduction in the control of

the H2O2 content in the cytoplasm and mitochondria by

peroxiredoxins, which aggravates oxidative stress [37, 38].

Expression of miR-335 and miR-34a leads to the suppres-

sion of TrxR2 activity in the redox-dependent reduction of

oxidized mitochondrial Trx2, thus inhibiting reduction of

disulfides and promoting deleterious action of ROS [39].

At the same time, some miRNAs reduce oxidative

stress via suppressing ROS-generating enzyme systems

(Fig. 2b). Thus, miR-448-3p, miR-34a, and miR-25,

whose targets are p47phox subunit, NOX2, and NOX4 (the

Fig. 2. Relationship between miRNAs and ROS. a) Influence of miRNAs on the enzyme systems controlling ROS intracellular levels.

b) Influence of oxidative stress on the miRNA expression (→ activation, ⊥ repression).

a

b

ROS

Targets:

Targets:
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latter two proteins are isoforms of ROS-producing

NADPH oxidase) and miR-23b, whose target is proline

oxidase (POX), suppress ROS generation [40-42]. miR-1

causes decrease in the intracellular level of NOX5 and

inhibits production of superoxide anion, whereas miR-

1283 expression leads to the decrease in the NOX1-

dependent generation of ROS [43, 44]. Suppression of

miR-25 expression in rats receiving cholesterol with food

was accompanied by the increase in the NOX4 protein

level and oxidative stress development in the myocardium

cells, resulting in the cardiac muscle dysfunction [45].

Moreover, NOX4 is also a target of miR-182 and miR-9-

5p. Impairments in the expression of these miRNAs

cause the damage of neurons and development of fibros-

es, respectively [46, 47]. Downregulation of miR-448-3p,

whose target is NOX2, is associated with cardiomyopathy

mediated by the NOX2 activation and ROS accumulation

in the myocardium cells [40].

Some miRNAs control expression of nitric oxide

synthase (NOS) isoforms that produce NO. In the pres-

ence of elevated amounts of superoxide anion, NO can

form highly reactive peroxynitrite. miR-155 and miR-

miRNA

206
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34a

30b

181a

23b-3p

26a-5p

181c

25

34a

376a

448-3p

486-5p
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200c
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141

155

92a
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30b

200a

Regulators of cell redox status as redox-dependent targets of miRNAs
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[34]
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[42, 45]
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[92]
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[92]
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[48]

[93]

[94]

[84]

[95]

[96]

[96]
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dog cardiomyocytes

rat pheochromocytoma PC12 cells, human neuroblastoma SH-SY5Y cells

rat kidney mesangial cells

rat kidney mesangial cells

human retinal pigment epithelium ARPE-19 cells 

rat H9c2 cardiomyocytes 

human embryo kidney HEK293 cells, 

human erythroleukemia K562 cells 

rat ventricular cardiomyocytes 

rat kidney mesangial cells, rat cardiomyocytes, human embryo kidney
HEK293 cells 

human glioblastoma A172 cells 

human embryo pulmonary IMR-90 fibroblasts 

mouse ventricular cardiomyocytes

human embryo pulmonary IMR-90 fibroblasts 

human embryo pulmonary IMR-90 fibroblasts 

human umbilical vein endothelium HUVEC cells

mouse bone marrow mesenchymal stem cells 

human retinal pigment epithelium 

human pancreas Capan-2 adenocarcinoma 

mouse vascular smooth muscle cells 

rat cardiomyocytes

rat cardiomyocytes

mouse large intestine carcinoma CT26 cells, human embryo kidney
HEK293T cells, human breast carcinoma cells MDA-MB-436, human
breast ductal cells MDA-MB-435S

Target

SOD1

SOD2

SOD2, Txnrd2

SOD2, Txnrd2

catalase

Gpx1

PrxIII

PrxIII

COX1

NOX4

NOX2

p47phox

SIRT1, FOXO1, eNOS

FOXO1

Keap1

FOXO3a

MKK4, JNK1

p53

p53

MAPK14
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200c suppress NO generation by decreasing the intracel-

lular levels of eNOS (endothelial NOS) [48, 49], whereas

miR-Let7a, miR-294, and miR-721 suppress expression

of iNOS (inducible NOS) [50, 51].

Changes in the cell redox status under the influence

of miRNAs can be promoted by miRNA-mediated sup-

pression of pentose phosphate pathway of glucose oxida-

tion. Overexpression of miR-1 and miR-206 (whose tar-

gets are glucose-6-phosphate dehydrogenase, 6-phos-

phogluconate dehydrogenase, and transketolase) is

accompanied by a dramatic decrease in the intracellular

level of NADPH [52], which causes a decrease in the

activity of NADPH-dependent oxidoreductases (includ-

ing thioredoxin reductase, glutathione reductase,

cytochrome P-450 reductase, and NADPH oxidase),

leading to further imbalance of the ROS/antioxidant ratio

and disturbance of cell redox homeostasis.

Mitochondria are major providers of ROS in the cell.

miRNAs can regulate the metabolic activity of mitochon-

dria [53]. Under hypoxic conditions, some types of cell

upregulate expression of miR-210, resulting in the activa-

tion of ROS generation by the mitochondria. A decrease

in the production of carnitine O-acetyltransferase, a

mitochondrial enzyme involved in the fatty acid metabo-

lism, by miR-378 proves the ability of miRNAs to control

the energy state of the cell.

Many studies have indicated that miRNAs can regu-

late redox-depending signaling and its relationship with

other pathways of signal transduction.

It was found that miR-205 binds to the

PHD1/EGLN2 gene encoding prolyl hydroxylase 1 and

suppressed transcription of EGLN2 (α-ketoglutarate-

dependent hydroxylase 2), which leads to the inhibition

of transcription factors HIF and ATF4 (transcription

activating factor 4) involved in the expression of the

SOD1, SOD2 and НO-1 genes. As a result, miR-205

decreases ROS levels in the cell and protects it against

oxidative stress [54]. An increase in the content of miR-

205 in the cells does not affect cell growth and morphol-

ogy but increases cell resistance to the oxidative and ER

stresses. Based on these data, miR-205 might be a prom-

ising candidate for a potential therapeutic agent [54].

Cell redox homeostasis can be regulated by miRNAs

through modulating the intracellular content of the

redox-dependent transcription factor Nrf2. Some genes

encoding proteins that play an essential role in the pro-

tection against oxidative stress and xenobiotics contain

antioxidant-responsive elements (AREs) in their promot-

er regions. These are genes for the antioxidant enzymes

(Mn-SOD, catalase, heme oxygenase 1), enzymes sup-

porting the intracellular level of GSH via de novo synthe-

sis and GSSG reduction (H- and L-subunits of γ-glu-

tamyl-cysteine ligase, γ-glutamyl transferase, glutathione

reductase), redox-dependent proteins (thioredoxin 1,

thioredoxin reductase 1, peroxiredoxin 1, peroxiredoxin

2), glutathione S-transferase isoforms GSTP1-1 and

GSTA4-4, NADPH:quinone oxidoreductase 1, ferritin

H- and L-subunits, etc. AREs are regulated through

binding with Nrf2 that forms a heterodimer with the low-

molecular-weight MafK protein. Normally, Nrf2 is pres-

ent in the cytoplasm in a complex with the protein Keap1.

In response to oxidative stress and some inducers, cys-

teine residues within Keap1 are oxidized, leading to the

Nrf2 release and translocation to the nucleus, where it

binds with the ARE-containing gene promoters [55].

miR-93 represses the NRF2 gene with the following

reduction in the cell antioxidant defense, while miR-153,

miR-27a, miR-142-5p, and miR-144 decrease the Nrf2

level post-transcriptionally, leading to a similar effect [56,

57]. In the p53-dependent tumor cells, miR-34a sup-

presses expression of the NRF2 gene, thus activating

development of the oxidative stress [58]. Similar effect is

produced by miR-93-5p, miR-27a-5p, miR-28, and

miR-142-5p. miRNAs can influence NRF2 expression

indirectly; however, the mechanism of such regulation is

studied insufficiently [59]. Nrf2 mRNA is a target for

more than 85 miRNAs that bind to this mRNA and pre-

vent its translation [60].

A decrease in the intracellular level of Nrf2 due to

the upregulation of miR-144 expression in erythroid cells

led to the decrease in the intracellular level of basic low-

molecular-weight antioxidant glutathione (GSH), result-

ing in the reduction of cell antioxidant defense [61]. The

same effect was demonstrated for the neuronal SH-SY5Y

cells, in which overexpression of miR-144, miR-153,

miR-27a, and miR-142-5p suppressed the NRF2 expres-

sion and led to the decrease in the GSH level as a result

of the downregulation of expression of the catalytic sub-

unit of γ-glutamylcysteine ligase, an enzyme limiting the

rate of GSH de novo synthesis [62]. miR-153 and miR-

30a-5p regulate expression of the gene for glutathione

peroxidase (Gpx1) located in both the cytoplasm and

mitochondria via suppressing transcription factors Nrf2

and NeuroD1 [63].

The toxic effects of the mycotoxin ochratoxin A

(OTA) in a culture of epithelial cells of kidney proximal

tubules are mediated by a decrease in the antioxidant

response through suppressing the expression of the NRF2

and HO-1 genes, leading to the increase in the ROS con-

tent and activation of lipid peroxidation [64]. It was

established that OTA decreases the intracellular level of

Nrf2 but does not influence all miRNAs participating in

the Nrf2 regulation. Thus, OTA did not affect expression

of miR-144 and miR-34a, but upregulated expression of

miR-200c and miR-132. It was also shown that induction

of miR-132 plays a crucial role in the decrease in the

intracellular level of Nrf2. Downregulation of the НO-1

expression by OTA is associated with a decrease in the

Nrf2 content and increase in the expression of miR-200c

via independent pathways. Assessment of the cell

response to the inhibition of various miRNAs demon-

strated that inhibition of miR-132 prevents the develop-
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ment of the OTA-induced oxidative stress. Inhibition of

miR-200c also resulted in the decrease in the OTA toxic-

ity and suppression of ROS generation [64].

miRNAs can activate the Nrf2 signaling pathway by

decreasing the levels of Keap1. Thus, miR-7 that binds

with the Keap1 mRNA downregulates the intracellular

content of Keap1 protein, resulting in the nuclear local-

ization of Nrf2 and subsequent transcriptional activation

of its target genes in SH-SY5Y cells [65]. miR-200a

destabilizes Keap1 mRNA and leads to a considerable

increase in the Nrf2 activity [66].

miRNAs that control expression of genes encoding

isoforms of the transcription factor FOXO (fork-head box

protein O1) significantly contribute to the redox regula-

tion. FOXO isoforms play an important role in the cell

cycle control, apoptosis, autophagy, stress response, and

antioxidant protection [67]. Suppression of the FOXO

gene by miR-182 activates the cell cycle and prolifera-

tion. On the contrary, downregulation of miR-182 leads

to the suppression of proliferation, cell cycle arrest,

and/or activation of apoptosis caused by the activity of

FOXO isoforms [67]. It was found that the action of H2O2

on the neuroblastoma SK-N-MC cells is accompanied by

inactivation of the transcription factor STAT5, resulting

in the 10-fold decrease in the expression of miR-182,

which in its turn, causes a 4-fold increase in the FOXO1

protein level (however, the content of FOXO1 mRNA

remains virtually unchanged) with subsequent increase in

the levels of proapoptotic proteins Bax and Bim and acti-

vation of caspase 3 [68].

The deficiency of miR-155 in the culture of

endothelial cells from the human brain microvessels leads

to the suppression of ROS generation and increase in the

production of NO via the PI3K/Akt signaling pathway.

The cells deficient by miR-155 were resistant to the

oxidative stress associated with the increase in the content

of oxidized low-density lipoproteins. Knocking down the

gene encoding miR-155 lowered the cell ability to initiate

apoptosis and promoted proliferation under both normal

conditions and in oxidative stress. The authors believe

that these changes were associated with suppression of

genes coding for the epidermal growth factor (EGFR),

kinase ERK1/2, and p38 MAPK [69].

It should be noted that a high degree of correlation

has been found between the antioxidant protection, cir-

cadian rhythm, and miRNA functions [70]. In particular,

such correlation has been demonstrated for circadian reg-

ulation of the key antioxidant enzymes (SOD1, SOD2,

catalase, and glutathione peroxidase isoforms Gpx1,

Gpx2, and Gpx3), thiol oxidoreductases of the thiore-

doxin family (Trx1, Trx2, TrxR1, TrxR2, and Txnip), and

peroxiredoxins (Prx1, Prx2, Prx3, and Prx6). Therefore,

it is believed that dysfunction of miRNAs caused, in par-

ticular, by the oxidative stress, can considerably con-

tribute to the development of various pathologies. The

role of miRNAs in the regulation of circadian rhythms of

redox homeostasis needs further investigation for proba-

ble prediction of some diseases and their treatment.

miRNAs AND REDOX-DEPENDENT

PROCESSES IN TUMOR CELLS

Metabolic reprogramming of cancer cells leading to

the upregulation of intracellular ROS levels is a charac-

teristic feature of malignant development [3]. In tumor

cells, the content of ROS is maintained at the critical

level, which facilitates triggering of many signaling path-

ways that can accelerate proliferation without inducing

cell death. Such regulatory mechanisms are associated

with the activities of specific ROS-sensitive proteins

(redox sensors) [71]. Currently, it is commonly accepted

that maintaining the redox balance is crucial for prevent-

ing oncogenesis. At the same time, promoting the death

of tumor cells by increasing the levels of ROS may be a

promising strategy in the antitumor therapy.

Because miRNAs are sensitive to the action of ROS,

their functional activity is determined by the redox status

of tumor cells [12]. Moreover, expression of miRNAs can

be regulated by various transcription factors, including

p53, c-Myc, and NF-κB, whose activities in tumors cells

are significantly altered. Numerous studies have shown

that some of these transcription factors are redox-sensi-

tive; therefore, an abnormal expression of miRNAs in

tumor tissues is likely to be at least partially associated

with the ROS-induced dysregulation of transcription fac-

tors [12].

Tumor suppressor p53 causes cell cycle arrest and

apoptosis activation. The manifestation of its antitumor

activity involves of a number of miRNAs. Thus, p53 acti-

vates transcription of miR-34a, which triggers apoptosis

of lung cancer cells. p53 participates in the activation of

transcription of many tumor-associated miRNAs,

including miR-124, miR-145, miR-192, miR-194, and

miR-215 [72-74]. On the other hand, p53 is sensitive to

ROS; its transcriptional activity changes depending on

the ROS level, thus regulating the tumorigenesis.

Cysteine residues in p53 can undergo oxidation/reduc-

tion with the involvement of Trx and GSH, which regu-

lates the ability of p53 for DNA binding and subsequent

activation of apoptosis. The existence of the redox-

dependent control of miRNA expression through the reg-

ulation of p53 was confirmed by the observation that

H2O2 causes p53 phosphorylation at Ser33 residue, lead-

ing to the activation of miR-200 transcription by p53 and

subsequent death of liver cells [75]. A decrease in the

miR-200 level is associated with hepatocellular carcino-

ma metastasis; therefore, it may be assumed that p53

functions as a tumor suppressor through the redox-

dependent increase in the miR-200 level [12]. Moreover,

an increase in the ROS generation activates p53, that in

turn activates transcription of miR-506 and suppresses
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lung tumor growth both in vitro and in vivo [76]. These

data indicate that ROS control the transcriptional activi-

ty of p53 and its functioning as a tumor suppressor, thus

facilitating the regulation of miRNA expression.

c-Myc is an oncoprotein that can either activate

transcription of oncogenic miRNAs (e.g., miR-17-92) or

inhibit transcription of tumor-suppressing miRNAs,

including miR-15a and let-7, which promotes oncogene-

sis [77]. The activity of c-Myc is also regulated by ROS.

Overexpression of the MYC gene induced by ROS can

activate transcription of miR-27a/b, thereby suppressing

expression of PHB1 and NRF2 genes. Knocking down c-

Myc and miR-27a/b promotes cell defense against the

oxidative stress in liver cells. Since miR-27a/b activates

proliferation of hepatocellular carcinoma cells, we can

suggest that the signaling pathway underlying progression

of liver cancer is the ROS/c-Myc/miR-27a/b cascade

[78].

Transcription factor NF-κB controls expression of

genes participating in immune response, apoptosis, and

cell cycle, in particular, through their involvement in the

inflammatory responses and stress monitoring. Oxidative

stress induces NF-κB dissociation from its inhibitory

protein IκB, leading to the NF-κB activation, transloca-

tion into the nucleus, binding to DNA, and activation of

gene transcription [79]. Some of the genes controlled by

NF-κB encode miRNAs. By regulating the activity of

NF-κB, ROS can indirectly influence transcription of

these genes. Thus, induction of TGFβ1 (transforming

growth factor beta 1) by ROS promotes NF-κB translo-

cation to the nucleus and its subsequent binding to the

promoter of the gene encoding miR-21 in a medium with

a high glucose content. At the same time, activation of

miR-21 is associated with the progression of colorectal

cancer [80]. ROS can inhibit the activity of NF-κB by

downregulating expression of miR-19a and activation of

apoptosis in pheochromocytoma PC12 cells [81].

Moreover, the TNF-α-mediated oxidative stress sup-

presses the activity of NF-κB and transcription of its tar-

get miR-155 (oncogenic miRNA associated with breast

cancer) [82]. In general, oxidative stress can either acti-

vate or inhibit NF-κB, which makes redox-dependent

regulation of miRNA transcription more flexible and

dependent on the tumor cell type and environmental

conditions [12].

The ability for chronic proliferation is a specific trait

of tumor cells. Proliferation is associated with the activa-

tion of PI3K/Akt/mTOR, Ras/Raf/MEK/MAPK, and

Wnt/β-catenin signaling pathways [83]. Both ROS and

miRNAs are involved in the regulation of these signaling

cascades, which indicates their important role in the

malignant transformation of cells. Activation of K-

Ras/MAPK signaling induces expression of miR-155,

whose target is mRNA of the transcription factor

FOXO3a that controls transcription of genes for some

antioxidant enzymes (e.g., SOD2 and catalase). FOXO3a

deficiency caused by the action of miR-155 increases the

intracellular content of ROS and stimulates proliferation

of pancreatic tumor cells [84]. Moreover, the redox-

dependent regulation of miRNAs can facilitate prolifera-

tion of cancer cells due to the changes in metabolic

processes. Thus, miR-1 and miR-206, whose targets are

genes encoding enzymes of the pentose phosphate path-

way, suppress the growth of tumor cells. Silencing of

genes for these two miRNAs prevents their oncosuppres-

sive function, leading to the elimination of ROS and

oncogenesis acceleration [52].

Moreover, redox-dependent regulation of miRNAs

is observed during activation of apoptosis of tumor cells.

Thus, the oncogene PAX7 contributing to the tumor cell

resistance to apoptosis is a target for miR-206. The action

of the antimalaria preparation artesunate includes facili-

tation of ROS generation and activation of p38 MAPK,

which results in the upregulation of miR-206 expression

and decrease in the protein PAX7 level, leading to the

activation of apoptosis in the rhabdomyosarcoma cells

[85]. The target of miR-23b is the mRNA for the tumor

suppressor proline oxidase that increases production of

ROS and activates apoptosis. Overexpression of miR-23b

correlates with the suppression of proline oxidase activity

in patients with renal cancer [86]. miR-21 targets the

mRNA for the programmed cell death 4 protein (Pdcd4).

An increase in the ROS level caused by the epithelial

growth factor (EGF) stimulates miR-21 expression,

resulting in the inactivation of Pdcd4, which promotes

the development of colorectal cancer [87].

Metastases are associated with a poor clinical prog-

nosis and unfavorable prospects in the therapy of malig-

nant tumors. Dysregulation of ROS generation and

expression of miRNAs can stimulate metastasis of tumor

cells. Thus, an increase in the ROS content induces

expression of miR-141 and miR-200a targeting the p38α
mRNA. This results in the suppression of metastasis of

ovarian cancer cells by increasing their sensitivity to

chemotherapy and can be considered a favorable progno-

sis in patients with ovarian cancer [88]. It was established

that the antioxidant resveratrol lowers the expression of

miR-21, causes an increase in the Pdcd4 level, and

inhibits the growth and metastasis of prostate tumor cells

[89]. miR-212 targets SOD2, and its action leads to the

increase in the cellular level of ROS and suppression of

epithelial-mesenchymal transition and metastasis of colo-

rectal cancer cells. By contrast, the knockout of the miR-

212 gene causes an increase in the intracellular SOD2

level, thus promoting the ability of the cells to withstand

oxidative stress, which is associated with a poor prognosis

and more aggressive tumor phenotype in patients with

colorectal cancer [90].

In conclusion, the studies of the last decade have

convincingly demonstrated the importance of the redox-

dependent regulation for maintaining cell homeostasis

and the role of miRNAs in this process. The mutual feed-
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back regulation of ROS and miRNAs, i.e., the interplay

between the ROS action on expression of miRNAs and

control of the ROS level via miRNAs expression, is very

important for the cell functioning, since it regulates the

ratio between the activities of ROS-generating enzymatic

systems and cell antioxidant defense. Further studies are

required for better comprehension of the role of miRNAs

in the hierarchy of redox-dependent regulatory systems

with the purpose of miRNA application in the target ther-

apy of diseases in which oxidative stress is a pathogenic

factor.
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