
It is generally accepted that foreign antigens cause

the formation of antibodies that are known as adaptive,

and their levels and affinities are directly related to the

presence of these antigens. At the same time, extensive

experimental material has accumulated about antibodies

whose level and affinity for the antigen are practically

constant throughout life [1, 2]. These immunoglobulins,

in contrast to the adaptive ones, are known as natural

antibodies (nAbs). nAbs, being part of innate immunity,

mediate various functions such as protection from

pathogens, clearance of metabolites, surveillance of

transformed cells, and regulation [3-7]. All classes of bio-

molecules can be found among the antigens recognized

by nAbs; this is explained by the importance of the corre-

sponding protective processes [3, 4]. In the context of

nAbs origin, early age is of particular interest, since the

immune system of a child has a special status: despite the

very early onset of the development of immunity in onto-

genesis, it is functionally immature; the child receives

immunoglobulins G (IgG) from the mother’s blood sys-

tem, and there are practically no immunoglobulins M

(IgM) in the child’s blood [8-12].

It is generally believed that nAbs are primed largely

under the influence of the intestinal microflora; there-

fore, the study of the relationship between the developing

immunity, nutrition, and the microbial community is of

great interest [13-15]. However, model organisms, in par-

ticular mice, with their specific microbiota composition,

are not adequate models for studying human nAbs [16,

17]. Here we investigated the dynamics of antibody reper-

toires in children aged 3, 6, and 12 months, taking into

account the effect of their nutrition. Pathogenic microor-

ganisms possess a myriad of antigens, the structure of

their glycoconjugates differing dramatically from those of

mammals; hence, it is not surprising that nAbs against
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carbohydrate epitopes constitute an essential, if not dom-

inant, part of their repertoire [18-20]. This allows us to

make general immunological conclusions based on the

study of antiglycan nAbs. At the same time, it is risky to

make generalizations based on the study of only a few

antibodies. Therefore, we profiled the nAbs using a repre-

sentative array of 487 antigens.

MATERIALS AND METHODS

Microarrays were prepared from 341 different syn-

thetic amine-functionalized glycans and 146 bacterial O-

polysaccharides, using N-hydroxysuccinimide-deriva-

tized glass slides (slide H; Schott-Nexterion, Germany),

as described elsewhere [21]. The glycan library included

blood group antigens and some of the most frequently

occurring terminal oligosaccharides, as well as core

motifs of mammalian N- and O-linked glycoproteins and

glycolipids, tumor-associated carbohydrate antigens, and

bacterial polysaccharides mainly as a carbohydrate part of

lipopolysaccharides. Synthetic glycan structures (>95%

purity, generally synthetized in the Laboratory of

Carbohydrates, Institute of Bioorganic Chemistry,

Russian Academy of Sciences) are structurally the same

as natural ones. Structures, NMR data of polysaccha-

rides, and related references can be found in http://csdb.

glycoscience.ru/bacterial (Zelinsky Institute of Organic

Chemistry, Russia). The glycans at concentrations of

50 µM and 10 µg/ml (for oligo- and polysaccharides,

respectively) were printed in 6-12 replicates. A complete

list of printed glycans can be found in Table S1 of the

Supplement to this report on the journal website

(http://protein.bio.msu.ru/biokhimiya) and Springer site

(Link.springer.com). Two chips from each batch were

analyzed using standard Complex Immunoglobulin

Preparation (CIP; Immunogem, Russia) at a concentra-

tion of 1 mg/ml with biotinylated goat-anti-human Abs

(Thermo Fisher Scientific, USA) at concentration of

10 µg/ml followed by streptavidin–Alexa Fluor 555

Conjugate (Thermo Fisher Scientific) at concentration of

1 µg/ml. Batches of printed microarrays with intra- and

inter-chip correlation more than 0.9 were used. After

printing, glycochips were blocked for 90 min at 25°C with

blocking buffer (100 mM boric acid, 25 mM

ethanolamine, 0.2% (v/v) Tween 20, pH 8.5) (Sigma-

Aldrich, USA), which was then washed out with milli-Q

grade water (Mediana-Filtr, Russia) and dried by the air

using a Galaxy Mini-Array centrifuge (VWR

International, South Korea). Blocked microarrays were

stored at –20°C for further analysis. Before serum analy-

sis, microarrays were incubated in an incubation chamber

(Simport, Canada) for 15 min at 25°C with PBS (Sigma-

Aldrich) plus 0.1% (v/v) Tween 20 (buffer 1), and the

buffer was then carefully removed from the microchip

surface using Whatman filter paper (Sigma-Aldrich).

Human sera were diluted 1 : 15 in PBS plus 1% (w/v)

BSA (Sigma-Aldrich) and 0.1% (v/v) Tween 20 (buffer

2). Diluted serum was spread over the slide surface and

incubated with agitation (32-36 rpm) at 37°C for 90 min.

After the incubation and a round of washing steps with

buffer 1 and buffer 3 (PBS with 0.01% v/v Tween 20), the

microarrays were incubated for 1 h at 37°C (32-36 rpm)

with a mixture of goat-anti-human IgG conjugated to

Alexa Fluor 555 and goat-anti-human IgM conjugated to

Alexa Fluor 647 (Thermo Fisher Scientific) at a concen-

tration of 8 µg/ml (each) in buffer 2. After another round

of washing (buffer 1, buffer 3, and finally milli-Q grade

water), the microarrays were dried by airflow using the

Galaxy Mini-Array centrifuge. The microarrays were

scanned using a ScanArray Gx scanner (PerkinElmer,

USA) using excitation wavelength 543 and 635 nm. The

resulting data were processed using ScanArray Express 4.0

software and the fixed 70 µm-diameter circle method as

well as Microsoft Excel software. From 6 to 12 spot repli-

cates represent each oligosaccharide or polysaccharide on

the array, and data are reported as median RFU (relative

fluorescent units) of replicates. Median deviation was

measured as interquartile range. A signal as RFU exceed-

ing the fluorescence intensity of the background value by

a factor of five was considered as significant.

The blood of healthy adult donors, children aged 3,

6, and 12 months, as well as their mothers, was obtained

by a standard fence from the ulnar vein. When selecting

donors for the study, pathology of gestation, congenital

diseases, and infections were excluded.

RESULTS

Antiglycan IgG and IgM during the first year of life.

We used a glycan microarray to study the repertoires of

children’s antibodies at ages of 3, 6, and 12 months and

those of their mothers immediately after delivery. The

children were divided into groups according to the type of

nutrition: breast milk (BM), standard formula milk (SF),

as well as two specialized types: extensively hydrolyzed

(EHF) and partially hydrolyzed (PHF) formulas.

During the first year of life, IgG diversity decreases.

The opposite tendency is characteristic for IgM: at the

age of 3 and 6 months, antiglycan IgM is practically

undetectable, but at the age of 12 months the repertoire of

antibodies of this class is diverse and comparable to

adults. Figure 1 shows the time course of antiglycan IgG

and IgM diversity (the specificity will be considered

below) in the sera of children during the first year of life.

Each bar represents the total number of antigens to which

serum antibodies are bound, and also for comparison, the

corresponding data for mothers and unrelated healthy

adult donors are presented. The latter group was neces-

sary because pregnant and lactating women are character-

ized by physiological immunodeficiency [22, 23].
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Fig. 1. Dynamics of antiglycan IgG and IgM in the sera of 3-, 6-, and 12-month-old infants with different types of nutrition, and in the sera

of their mothers, and in 10 healthy unrelated adult donors. Each number represents the absolute number of glycans (oligo- and polysaccha-

rides) that bind antibodies in the sera samples. OS, oligosaccharides; PS, polysaccharides; 3m, 6m, and 12m, age of children (months) at the

time of blood sampling; BM, breast milk; SF, standard formula; PHF and EHF, partially and extensively hydrolyzed formula, respectively.
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IgM repertoires in groups of infants who received dif-

ferent types of nutrition. Tendencies towards a decrease in

the diversity of antiglycan IgG and the appearance of

antiglycan IgM by only 12 months are characteristic of all

children whose blood serums were studied in this work,

regardless of what type of nutrition they received during the

first year of life. At the age of 3 and 6 months, IgM is prac-

tically undetectable in children, and at 12 months, the

repertoire of antiglycan antibodies of this class is compara-

ble in diversity to an adult (Fig. 1). It should be noted that

among bacterial polysaccharides to which there are anti-

bodies, neither structural nor generic similarity is found;

apparently, the appearance of antibodies to them occurs

individually. In Fig. 2, a list of glycans is presented in the

form of a color map demonstrating the maximum IgM

binding signals in the blood sera of one-year-old children.

Comparison of the repertoires of IgM of infants

receiving different types of nutrition and those of adult

donors showed that infants fed with PHF exhibited the

greatest variety of glycan-binding immunoglobulins,

which is typical of adults. The table shows such a com-

parison for oligosaccharides and Table S2 (Supplement)

for polysaccharides. Supplementary Table S3 contains all

fluorescence signals for IgM capable of binding glycans in

the serum of infants, their mothers, and unrelated adults.

It should be noted that almost all glycans (highlight-

ed in the table) against which adults, but not 12-month-

old children, have antibodies are structurally related to

the LeC disaccharide (Galβ1-3GlcNAcβ). Earlier, we

have described nAbs with this specificity as anti-LeC anti-

bodies [24, 25].

IgG repertoires in the groups of infants who received

different types of nutrition. The data are shown in Table S4

(Supplement). There are two reasons why we omit

detailed discussion of IgG: (i) the nAbs mainly belong to

IgM; (ii) it is impossible to discriminate between infant

and maternal IgG, because IgG can cross the placental

barrier during intrauterine development [26].

Fig. 2. Glycans showed maximal fluorescence signals of binding with IgM in sera of 12-month-old infants who received different type of nutri-

tion. The data are represented as a thermal map where a darker shade of red color corresponds to a higher fluorescent signal. Designations as

in Fig. 1 legend.
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Comparison of IgM repertoires in 12-month-old children and unrelated adult donors

Groups of children fed by different types of nutrition 

Note: The table represents 40 oligosaccharides whose signals for binding to antibodies have the maximum intensity in adult donors (glycans are sort-

ed in descending order of the signal; for 10 donors, the median of the signal values is measured). The right side of the table presents the sig-

nals of binding of antibodies to these glycans in the serum of 12-month-old children who received different types of nutrition. The presence

of a meaningful binding signal for each child is indicated as “+”. The binding of antibodies to glycans, highlighted in gray in the table, is prac-

tically absent in children.
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DISCUSSION

By the time of birth, the B-cell system of immunity

is morphologically formed. In contrast, functional matu-

rity develops for a rather long time after birth, almost

until adolescence [9, 27]. However, the most significant

events from the point of view of the formation of the

immune system occur during the first year of life [13-15].

The origin of nAbs has been studied in model systems, but

the results of these studies should be interpreted with cau-

tion, since the repertoire of animal (including mouse)

nAbs differs significantly from the human one [16, 17]. In

addition, other animals and humans substantially differ in

the permeability of the intestinal epithelium for

immunoglobulins; for example, maternal IgG of rodents,

cattle, and cats enter the bloodstream of the offspring

through milk. In humans, the process of IgG transfer

from mother to child ends at the time of their physical

separation, i.e., at the moment of birth [28].

The first months of a child’s life are characterized by

the so-called physiological (in other words, natural and

necessary) immunosuppression, with reduced numbers of

neutrophils and proinflammatory cytokines [29, 30]. At

first glance, a baby may seem defenseless, but this

immunosuppression proves necessary, since it provides the

possibility of forming tolerance to antigens of regular

microbiota and food; it also ensures synchronous develop-

ment of the components of the immune system in the

course of interaction of the infant with new environmen-

tal antigens [31-33]. While humoral immunity is gradual-

ly forming, the role of protection is performed by acute

phase proteins, which are capable of providing short-term

nonspecific protection in the cases of injuries and infec-

tions, as well as components of the mother’s milk, such as

antimicrobial peptides. The recognition of antigens by

antigen-presenting cells (APCs) also has age-related char-

acteristics. Specifically, the production of TNFα (tumor

necrosis factor-alpha), IFNγ (interferon-gamma), and

IL-12 (interleukin-12) is decreased in newborns, while

IL-10 (interleukin-10) and IL-6 (interleukin-6) are

secreted at the rate typical of normal adults [34, 35].

Glycans of microorganisms are among the antigens

that are the most important for the early development of

the immune system, because, in contrast to peptide anti-

gens, they can be recognized, first, without the formation

of an MHC (main histocompatibility complex) complex

and second, directly by B cells, which in this case act as

APCs due to the characteristic structure of the B cell

receptor (BCR). At the same time, the amount of the

antigen itself can influence the immune response of B

cells: a small amount of glycan cannot activate the B cell,

because the BCR molecule has to simultaneously bind

many copies of this antigen to transmit the signal into the

cell [36-39].

Antiglycan antibodies are a convenient object for

studying the general principles of the formation of nAbs.

The repertoire of antiglycan Abs is wide [19, 40], and a

considerable part of it (almost all non-allo-antibodies) is

the same in all individuals; in addition, there is a conven-

ient tool for their identification, namely, our glycochip

[41-43]. We studied the sera of healthy infants as well as

their mothers and ten unrelated healthy adults. This third

group was necessary for estimating the average repertoire

in the population, because of the specifics of the antibody

level and composition in pregnant and lactating women

[22, 23].

The diversity of antiglycan IgG in the period from 3

to 12 months of age decreased (Fig. 1); this was observed

for both antibodies against mammalian glycans and those

against bacterial polysaccharides. The maximum diversi-

ty of IgG observed at the age of 3 months corresponded to

the maternal repertoire; during the next several months,

until the age of one year, their diversity was decreasing;

this agreed with the literature data [44, 45]. However,

there is one important contradiction. It is known [46] that

the half-life of the IgG molecule does not exceed 25 days,

which means that either infants’ antibodies at the age of 3

months are not of maternal origin or their circulation

time in children’s blood is much longer than it is believed

to be. We assume that IgG transferred into the fetus can

have an extended circulating time compared with con-

ventional IgG. Indeed, according to some studies, anti-

bodies of pregnant women have a number of specific

characteristics, in particular, an altered glycosylation [47,

48], which may increase the circulation time of the

immunoglobulin. By the way, the longer circulation pro-

vides protection for the period necessary for the appear-

ance of IgM. It is also likely that the late IgM production

and prolonged maternal IgG existence both maintain the

formation of oral tolerance against self-antigens and

commensal bacteria.

The time course of IgM changes in the period from 3

to 12 months of age was completely different than in the

case of IgG; at ages of 3 and 6 months, the IgM range was

still narrow (Fig. 1) compared with adults. By the age of

12 months their repertoire was extended. Since IgM in

normal pregnancy cannot cross the placenta, the produc-

tion of IgM in infants has not yet reach a sufficient level;

therefore, according to the published data, the proportion

of antibodies of this class in newborns does not exceed 6-

10% of the adult level [44]. It should be noted that, in the

group of breastfed (BM) children, the antibody repertoire

was different from the three other groups; the repertoire

of their antiglycan IgM was the least similar to the “adult”

one. At first glance, this finding is unexpected, because

the BM infant remains in close contact with the mother;

i.e., they are under much more favorable conditions than

the children from the other three groups. A possible

explanation is that breast milk contains antimicrobial

peptides, proteins (including immunoglobulins), and gly-

cans (free glycans and glycoconjugates) [35, 49], which

fulfill the function of antibodies, if only partly. In other
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words, a wide variety of antibodies under these conditions

is not necessary. Then, the accelerated formation of nAbs

under the conditions of artificial nutrition can be inter-

preted as untimely and, hence, less demanded. However,

it should be noted that this difference in the repertoire is

not extremely pronounced.

The maximum variety of IgM was observed in chil-

dren fed with PHF, which is a mixture of partially

hydrolyzed milk proteins, mostly peptides of higher sizes,

which are a reservoir of antigenic determinants. These

peptides may serve as mimotopes [50-54] in the process of

priming of antiglycan B1 cells.

We should especially note the absence of antibodies

against the LeC epitope in all of the 20 children at the age

of 12 months; conversely, in practically all tested adults

(~150), anti-LeC belongs to antibodies of top rank [55].

These antibodies seem to play a role in the surveillance of

the appearance of tumor cells [56-58]. Why they are com-

pletely absent at early age, when they appear, and what

triggers their priming, remains to be seen. At the same

time, most other top-rank antiglycan nAbs, such as those

against Rha, Galα1-4(3)GlcNAc, and GlcNAcα1-

3Galβ1-4GlcNAcβ, are already present in children at 12

months of age (table). Moreover, the titers and the occur-

rence of other antibodies against tumor-associated gly-

cans, including GalNAcα1-3GalNAcβ (Fs-2, carcino-

mas [59], no. 101 in Fig. 2) and Galβ1-4Galβ1-

4GlcNAcβ (melanoma, no. 264 [60]), in children are

higher than those of other antibodies.

In summary, the natural antibodies of children only

approach the repertoire for adults by 12 months of age. It

is interesting that the appearance of some antibodies,

such as anti-LeC, is delayed to an older age in all studied

children. This can be explained by the fact that LeC is not

merely a tumor-associated, but also onco-embryonic

antigen; this will need to be explored experimentally. In

addition, judging by our results, the lifetime of the mater-

nal IgG in the infant’s body seems to be substantially

longer than commonly believed.
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