
Parkinson’s disease (PD) is one of the most prevalent

age-associated neurodegenerative diseases (one case per

120,000 persons; 1% among persons over 60 years old)

[1]. The absolute majority of PD cases is sporadic and has

a multifactor nature; the monogenic forms of PD com-

prise ~10% of all cases [2]. Among the monogenic forms,

the most frequent are those associated with mutations in

the LRRK2, PARK2, GBA, PINK1, DJ-1, and VPS35

genes [3, 4]. Genetic variants of primary parkinsonism

have made it possible to discover key components of PD

pathogenesis, such as mitochondrial dysfunction and

impairments in processing of neuronal proteins [5].

During the last few years, special attention has been

given to PD modeling with induced pluripotent stem cells

(iPSCs) derived from somatic cells of patients with genet-

ically determined parkinsonism [6, 7]. Using this tech-

nique, effects of mutations can be analyzed in vitro in any

type of cells purposefully differentiated from iPSCs. This

approach allows to study molecular mechanisms of neu-

rodegenerative process in “proper” patient’s neurons

with unique genetic profile, which heralds a transition to

the cellular level of personalized neurology. Cell tem-

plates obtained from iPSCs can be used as a tool for per-

sonalized screening of pharmaceutical preparations with

a neuroprotective potential [8]. Moreover, iPSCs can be

also used in substitutive PD therapy using dopaminergic

neurons obtained from patient’s fibroblasts to eliminate

complex ethical and immunologic problems of neuro-

transplantation [9]. Genome editing presents additional

possibilities for cell modeling of monogenic PD forms

because it allows targeted correction of mutant sequences

and assessment of phenotypic expression of different

nucleotide variants in isogenic cell lines [10].

As any new technique, cell reprogramming is asso-

ciated with a number of problems that have to be solved

before introducing this technique into clinical practice.

Despite all obvious advantages of cell reprogramming, it

is important to remember the risks associated with inter-

ference into the genome at the stages of reprogramming

and genome editing. Moreover, when working with spe-

cific molecular targets, one has to consider gene net-

works, i.e., coordinatively expressed genes and their
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products whose interaction can influence the final

result.

In this mini-review, we discuss the problem of

tetraploidy in genome editing. We have encountered this

problem when editing the genome of iPSCs obtained

from fibroblasts of a PD patient who was a carrier of the

G2019S mutation in the LRRK2 gene. This gene is asso-

ciated with the development of the most frequent heredi-

tary form of PD recorded in 7% cases of primary parkin-

sonism in different world populations and in up to 40%

cases in the populations from the Middle-East Mediter-

ranean region [11]. Carriers of mutations in LRRK2

inherit the disease by the autosomal-recessive type. The

protein product of the LRRK2 gene is a cytoplasmic

GTP-dependent kinase presumably involved in

autophagy and functioning of mitochondria [12, 13]. The

pathological increase in the kinase activity of LRRK2 is

believed to be especially important in the neurotoxic

effects of LRRK2-associated mutations, and therefore,

identification of molecular substrates of LRRK2 is

extremely important.

As we have described earlier [14], iPSC culture and

neuronal precursors were obtained from fibroblasts of a

patient with the LRRK2-associated form of PD; the cells

were reprogrammed by the non-integrational approach

using transduction with the Sendai virus. To correct the

G2019S mutation (G6055A) and to compare structure-

functional features of the mutant and “normalized” iso-

genic cultures of iPSCs and neurons differentiated from

them, genome editing of iPSCs was performed with the

CRISPR/Cas9 (Clustered Regularly Interspaced Short

Palindromic Repeats/Cas9 protein) system [15, 16]. After

editing, iPSCs were differentiated by the neuronal type;

the resulting isogenic lines of the neuronal precursors car-

rying the G2019S mutation (the non-edited type) and

lacking the mutation (the edited type) were subjected to

routine cytogenetic treatment for preparing metaphase

plates for structural and quantitative analysis of chromo-

somes. Karyotyping of edited cells revealed that 24 to 43%

cells from different clones contained the 92,XXYY/46,XY

mosaic variant of tetraploidy (figure) [14].

This variant of polyploidy can be a part of normal

differentiation of some types of mammalian cells, for

instance, keratinocytes [17] or brain neurons [18].

Healthy human brain has ~10% neurons with more than

a diploid chromosomal set, and <1% of them are neurons

with the tetraploid DNA [19]. Tetraploid cells are also

observed in the normal retina of vertebrates [20].

However, despite all the aforementioned examples, asso-

ciation between tetraploidy and various pathologies, in

particular, oncological diseases, has been established long

ago [21].

The appearance of tetraploidy can be related to

impairments in the cell division mechanism. All stages of

the mitotic cycle are regulated by specific genes, including

genes of the spindle assembly checkpoint (SAC) system

that regulates correct segregation of chromosomes and

attachment of spindle microtubules [22]. Impairments in

the SAC system can disturb cytokinesis (separation of

daughter cells due to the formation of cleavage furrow)

Karyotypes of two neuronal precursor clones after genome editing: a) 46,XY; b) 92,XXYY (tetraploidy)

a                                                       b
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and result in cell tetraploidy [18, 23]. Tetraploidy is high-

ly probable in case of such mitotic phenomena as mitotic

slippage (exit from mitosis without termination of

anaphase or cytokinesis) and endoreduplication (two

rounds of DNA replication without mitosis) [20, 21].

Cell tetraploidization can be caused by telomere

exhaustion and represents a response to the loss of chro-

mosomal ends. In the norm, continuous proliferation of

somatic cells in the absence of telomerase activity leads to

the gradual shortening of telomeres and apoptosis.

However, under certain conditions, telomere dysfunction

can cause the appearance of tetraploid cells. This process

can proceed by two different pathways. One of them is

associated with the dicentric chromosome formation at

the expense of unprotected telomeric regions. In this

case, if two centromeres of such chromosome are pulled

to the opposite poles of the cell during mitosis, the

delayed chromosome can interrupt cell division and pre-

vent cytokinesis [18, 21, 23]. The other mechanism

involves activation of ATM (ataxia telangiectasia mutat-

ed) and ATM- and Rad3-related (ATR) serine/threonine

protein kinases in response to continuous DNA damage

signal caused by telomere dysfunction. This causes cell

cycle arrest followed by apoptosis [24]. However, in the

absence of p53 protein (transcription factor and tumor

growth suppressor) in the cells, the cell cycle proceeds –

mitosis is bypassed, and the cell repeatedly enters the S-

phase, which results in tetraploidy. This pathway does not

require genetic alterations, except the loss of the p53 gene

function [24, 25]. The LRRK2 gene associated with PD

and studied by us in genome editing experiments interacts

with ATM and actively participates in the ATM-Mdm2-

p53 pathway regulating cell proliferation in response to

DNA damage [26], which can be the cause of changes in

the number of chromosomes.

Tetraploidy can result from cell fusion, that is some-

times observed for the brain cells. Cell fusion can be

caused by viral infection, inflammation, chemicals, and

ionizing radiation [23] and is believed to provide neuro-

protection and defense of damaged neurons [27].

Impairments in spindle assembly and disorders in

chromosomal segregation can be caused by dysfunctions

of mitochondria. Close correlation between neurodegen-

eration and mutations in mitochondrial DNA has been

already established [28, 29] that can be directly related to

the aforementioned LRRK2-associated pathology. Using

iPSCs, it was shown that various mutations in the LRRK2

gene in PD models are accompanied by a decrease in the

functional activity of mitochondria and increase in the

neuronal susceptibility to oxidative stress [30].

Developing oxidative stress can promote pathological

polyploidization. Reactive oxygen species affect a num-

ber of proliferation-regulating signaling pathways via

contributing to changes in ploidy and chromosomal

instability [31, 32]. Dopaminergic neurons differentiated

from iPSCs and carrying the G2019S mutation displayed

impaired cell morphology, including shorter neurites

[33]. As compared to normal dopaminergic neurons, the

neurons differentiated from iPSCs with the G2019S

mutation are more susceptible to such stress agents as

proteasome inhibitor MG-132 and 6-hydroxydopamine,

as well as to caspase-3 activation and apoptosis [34].

Mutations in the LRRK2 gene decrease the ability of cell

substrates for oxidative phosphorylation, impair mito-

chondrial motility, and cause mitochondrial DNA dam-

age in patient-specific iPSCs [35]. These impairments

can be reversed or prevented by genome editing [30]. It is

interesting that PD patients who are carriers of the

G2019S mutation in the LRRK2 gene also exhibit

changes in the mitochondrial function [36].

Another important cell component is nuclear enve-

lope, whose major components, lamins A and B, may be

called “guardians of the genome”. Lamin A/C (LMNA

gene), lamin B1 (LMNB1 gene), and lamin B receptor

(LBR) are extremely important for the chromosomal sta-

bility and structural integrity of cell nucleus by regulating

DNA transcription and replication. That is why changes

in lamins impair DNA repair and can induce malignant

transformation of somatic cells [37, 38]. These processes

are also influenced by the G2019S mutation in the

LRRK2 gene: sections from PD patients with this muta-

tion demonstrated changed nuclear morphology in the

dentate gyrus cells. Another characteristic feature was

hyperphosphorylation and disorders in functioning of

lamins B1 and B2 regulating nuclear structure in neu-

ronal derivatives of iPSCs [39]. It was suggested that

defects of the nuclear structure are caused by the LRRK2

interaction with the protein complexes of lamins B1 and

B2. The G2019S mutation stimulates kinase activity of

LRRK2 that directly or indirectly promotes phosphoryla-

tion of B-type lamins.

The LRRK2 protein is involved in the regulation of

F-actin via modulating the ERM (ezrin, radixin, moesin)

proteins through phosphorylation [40]. F-actin is a poly-

merized microfilament form of the major cytoskeleton

protein actin. There are more than 50 proteins interacting

with actin in its F- and G-forms; activity of these proteins

is regulated by Ca2+ ions and protein kinases. Impairments

in actin polymerization lead to disorders in cytokinesis

[41, 42]. LRRK2 is also involved in microtubule stabiliza-

tion – it interacts with α- and β-tubulins, phosphorylates

β-tubulin, and thus controls microtubule stability [41-43].

Obviously, proper functioning of spindle microtubules is

important for the normal course of mitosis.

Oncological diseases are often accompanied with

mitotic cycle disorders. An increased risk of development

of different types of cancer (breast, prostate, kidney, hor-

mone-dependent, and some other) was revealed in carri-

ers of the G2019S mutation in the LRRK2 gene [44, 45].

It was suggested that an increased risk of oncological dis-

eases in such patients is a result of excessive kinase activ-

ity of the mutant LRRK2 protein [45] and that this



GENOME EDITING IN PARKINSONISM 1043

BIOCHEMISTRY  (Moscow)   Vol.  83   No.  9   2018

acquired “toxic” function underlie the failure of mitotic

mechanisms in carriers of the G2019S mutation. It is

interesting that some small kinase inhibitors suggested as

anti-tumor agents are also considered promising candi-

dates for modulation of LRRK2 kinase in the LRRK2-

associated form of PD [46, 47].

Therefore, LRRK2 actively participates in cell pro-

liferation, maintenance of the nuclear envelope structure,

and formation cell membrane, spindle fibers, and

cytoskeleton. The G2019S mutation can affect normal

course of these processes and provoke systemic distur-

bances in the mitotic mechanisms thereby causing abnor-

malities in chromosomal ploidy. As shown above, major

and best studied causes of such abnormalities are as fol-

lows:

– impairments in the involvement of mutant

LRRK2 protein in the ATM-dependent mechanism of

cell proliferation; 

– dysfunctions of the division spindle and disorders

in chromosomal segregation resulting from mitochondri-

al pathologies and energy deficiency in neurons;

– destabilization of spindle microtubules as a result

of phosphorylation of the ERM family proteins and tubu-

lins by abnormal LRRK2 protein;

– disorders in the interaction of mutant LRRK2

with lamin complexes regulating nuclear architecture,

DNA transcription, chromatin stability, and DNA repli-

cation.

The above-described disorders can originate at dif-

ferent stages of reprogramming of fibroblasts from PD

patients with the LRRK2 mutations [48]. Therefore,

genome editing for correcting nucleotide sequences in

neurobiological experiments and development of neuro-

transplantation methods should be performed before or

during the reprogramming stage [48]. It must be remem-

bered that cell culturing by itself could impair genome

apparatus integrity [49-51]. The exact influence of

tetraploidy on specific functions of neurons derived from

iPSCs still remains unclear and requires further studies

[20, 25]. However, in any case, it is necessary to remem-

ber that the properties of target gene and its protein prod-

uct can essentially influence the results of cell reprogram-

ming and genome editing.
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