
Mediator is an essential coactivator of transcription

by RNA polymerase II (Pol II) in unicellular and multi-

cellular eukaryotes. Mediator acts as a scaffold that binds

and coordinates most transcription components [1].

Mediator interacts with general transcription factors,

chromatin-modifying complexes, and numerous gene-

specific activators [2]. It is involved in many signaling

pathways [1] and controls various aspects of cell metabo-

lism [3]. Mediator plays a key role in ontogenesis; muta-

tions in the Mediator subunits are associated with the

development of various pathologies [1, 4, 5]. It is not sur-

prising that a complex with such diverse and broad func-

tions has attracted considerable interest of researchers. In

this review, we present recent data on the structure and

functions of Mediator.

STRUCTURE OF MEDIATOR COMPLEX

Mediator is a large protein complex with a molecular

mass of 1.4 MDa that consists of ~25 subunits in mam-

mals (0.9 MDa and 20 subunits in yeast). The subunits

form four major structural modules: head, middle, tail,

and a mobile Cdk8 kinase module (CKM) (see table).

The subunit composition of the modules and their relative

position in the complex have been elucidated after solving

the 3D structure of yeast Mediator with high resolution

[6, 7] (Fig. 1a). The central role in the organization of

Mediator complex belongs to the Med14 subunit, that

connects the head, the middle, and the tail modules [8],

and to the Med17 subunit, that forms multiple contacts

with other subunits [9].

Recently, the structure of the Mediator complex has

been resolved by X-ray analysis, cryoelectron microscopy

(cryo-EM), and mass spectrometry of cross-linked sub-

units [9]. Most data have been obtained for yeast

Mediator, including the results of cryo-EM that allowed

reconstructing the 3D structure of the Mediator complex

consisting of its three major structural modules (Fig. 1b).

Although the structure of Mediator is conserved in all

eukaryotes [10, 11], its details in higher eukaryotes have

not been completely elucidated.

The structures of the Mediator core 15-subunit com-

plex with general transcription factors [12] and of the com-

plete Mediator–Pol II preinitiation complex (PIC) on the

promoter [13] have been obtained recently. It was found

that the Mediator head module forms multiple contacts

with RNA polymerase; the most important contact is bind-

ing of the head module to the unphosphorylated C-termi-

nal domain (CTD) of the RNA polymerase Rpb1 subunit

[13]. The head and the middle modules are responsible for

the interaction with general transcription factors on pro-

moters. The tail module protrudes from the PIC toward the

upstream DNA, thereby creating a platform for the inter-

action of PIC with transcriptional activators [14] (Fig. 1f).

Taken together, these results corroborate the suggestion on
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the major functional role of Mediator as a scaffold for

PIC assembly and stabilization on a promoter [13].

An important feature of the Mediator complex is that

its subunit composition can change depending on the

biological context. The most extensively characterized

alteration in the Mediator complex is reversible binding

of CKM [1]. Mass-spectrometry analysis showed that rel-

ative contents of individual subunits in the Mediator

complex preparations may differ. Also, the subunit com-

position of Mediator in differentiated cells becomes less

diverse, as it was also described for TFIID complex [15].

The presence of particular subunits in the complex might

be tissue-specific, as demonstrated for the Med26 subunit

in Drosophila [16]. In yeast, the Mediator complex com-

position can vary as well. Thus, Med3 and Med15 sub-

units of the tail module can form amyloid-like aggregates

under stress conditions, which changes the subunit com-

position of the whole complex [17]. These data suggest

the existence of Mediator complexes of varying composi-

tion. Since different Mediator subunits bind different

transcription factors, alternative forms of the complex

might be involved in the generation of alternative tran-

scriptional responses in cells.

Mediator is a complex that is dynamic in its subunit

composition and structure. Many subunits in this complex

(both in humans and yeast) have intrinsically disordered

regions (IDRs). It is possible that the presence of many

IDRs provides Mediator with the ability to interact with

structurally diverse transcriptional factors [18]. Structural

rearrangements in the Mediator complex come along with

its binding to the CKM and transcription factors or its

interaction with PIC [8, 14]. It was suggested that structur-

al rearrangements of Mediator are related to the sequence

of processes during gene transcription activation and play

an important role in the functioning of Mediator [8].

CYCLIN-DEPENDENT KINASE MODULE

OF MEDIATOR

The only enzymatic activity of Mediator is provided

by the kinase module that is universally conserved in

Module

Head

Middle

Tail

CKM

?

Mediator complex modules and subunits [5] with their known functions in transcription activation

Role in transcription activation

stimulates PIC assembly, interacts with Pol II and general transcription factors

interacts with Pol II together with the head module;
Med1 is target for many transcription factors;
Med14 acts as a scaffold that bonds all three modules

interacts with DNA-binding transcription factors;
human Med24, Med27, and Med29 are supposed homologs of yeast Med5, Med3,
and Med2

involved in transcription activation and repression;
Med12, Med13, Cdk8 have paralogs in human (shown in parentheses)

location in the Mediator complex is unknown

Subunits

Med6
Med8
Med11
Med17
Med18
Med20
Med22
Med30*

Med1
Med4
Med7
Med9
Med10
Med14
Med19
Med21
Med31
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yMed2/hMed29
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Notes: yMed, yeast Mediator subunits; hMed, human Mediator subunits.

* Metazoan-specific subunits.
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eukaryotes [4]. Yeast CKM is a protein complex with a

molecular mass of ~430 kDa that consists of four sub-

units: Cdk8, CycC, Med12, and Med13. In mammals,

Cdk8, Med12, and Med13 subunits have also paralogs

Cdk19, Med12L, and Med13L, respectively. The paralogs

are required for the normal course of ontogenesis (in par-

ticular, neurogenesis); their presence in the

CDK–Mediator complex is mutually exclusive [19].

Fig. 1. Three-dimensional structures. a) Mediator complex in free state based on data of X-ray analysis at 4.4 Å resolution [8] (RCSB PDB

ID: 5u0p [150]). All subunits are shown except Med1. The structure of the tail module is incomplete because of limitations of the method. b)

Yeast Mediator complex in free state based on data of cryo-EM at ~1.8 nm resolution [11] (ePDB EMDB ID: 2634 [151]). Structural mod-

ules (head, middle, tail) are shown with different colors. c) CKM in free state based on data of cryo-EM [20] (ePDB EMDB ID: 5588 [151]).

d) Superposition of the structures of the complete CKM (cryo-EM) and Cdk8–CycC complex [152] (RCSB PDB ID: 3rgf [150]). e) Contacts

between CKM and Mediator (asterisks, presumed areas of contacts; ?, interaction between Med12 and middle module was demonstrated for

human Mediator but not for yeast Mediator [20]); f) Mediator-containing PIC, as obtained by superposition of cryo-EM data (resolution,

21.9 Å; ePDB EMDB ID: 8308 [151]) and X-ray analysis data (resolution, 15.3 Å; RCSB PDB ID: 5sva [150]). The figure shows DNA mol-

ecules, RNA polymerase II (Pol II), TATA-binding protein (TBP), and transcription initiation factors TFIIA, TFIIB, TFIID, TFIIE, TFIIF,

TFIIH, and TFIIK. Structural modules (head, middle, tail) are shown with different colors.

a b

c f

d

e
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CKM has an elongated structure; it binds to the Mediator

middle module via the Med13 subunit in both mammals

and yeast [20, 21] (Fig. 1, c-e).

Regulation of CKM binding to Mediator is not com-

pletely understood. CKM itself is involved in the interac-

tion with transcription factors in plants, flies, and humans

[22-26] and can be recruited to DNA independently, as

demonstrated for several genes including yeast heat-

shock genes [27, 28]. There are several mechanisms for

the dissociation of CKM from the complex. In yeast,

Cdk11 phosphorylates subunits Med4 and Med27, which

results in CKM dissociation [29]. In mammals, CKM

dissociation might be caused by specific degradation of

Med13 [30]. PARP-1 regulates CKM dissociation from

retinoic acid receptor target genes [31]. In plants, disso-

ciation of CKM from the Mediator complex in the

upstream regions of some genes depends on the degrada-

tion of the IAA14 transcription repressor [23]. All these

data indicate that regulation of CKM binding to

Mediator is species- and gene-specific.

Cdk8 is a serine/threonine kinase whose target pro-

teins are SMAD1 and SMAD3 transcription factors [32],

Notch ICD [33], SREBP [34], E2F1 [35], STAT1 [36],

histone H3 Ser10 [37], and CTD of RNA Pol II [38].

Large-scale search for Cdk8/Cdk19 substrates using

cortistatin A allowed to significantly expand this list [39].

Sixty-four most probable targets were identified, most of

which were DNA-binding transcription factors, Pol II

factors, mRNA-processing factors, and subunits of chro-

matin-modifying complexes. This kinase also phosphory-

lates several Mediator subunits including Med12 and

Med13. Other targets of CKM are proteins involved in

DNA replication and repair and other processes, which

indicated that CKM functions in the nucleus are much

broader than it was earlier suggested. It was found that in

HCT116 cells, phosphorylation does not affect the stabil-

ity of target proteins except Med13/Med13L. However, in

other studies, Cdk8-dependent phosphorylation led to

degradation of Notch ICD, SMAD1, SMAD3, and

SREBP in higher eukaryotes [32-34] and Ste12p in yeast

[40]. It is possible that phosphorylation still plays a role in

the stability of the protein, but in a tissue-specific man-

ner.

CKM can either activate or suppress gene expres-

sion. However, Cdk8 knockdown in human cells has a

very slight effect on gene expression [39]. The functions

of Cdk8 in gene expression control are context-depend-

ent – in human cells Cdk8 regulates different genes in

response to different factors [41, 42]. The role of cooper-

ation between the module subunits in the regulation of

gene expression remains obscure. In yeast, all four sub-

units control expression of a common set of genes [43]. In

mammalian cells, Cdk8 and Med12 sometimes cooperate

in the regulation of certain genes; in other cases, Cdk8

and CycC function independently of Med12 [44-46].

Knockdown of Med12/Med13 and CycC/Cdk8 in

Drosophila resulted mostly in the opposing effects on gene

transcription; though rarely such knockdowns produced

similar effects [47]. Two paralogs, Cdk8 and Cdk19, seem

to have different gene targets, since knockdown of these

subunits affected only slightly overlapping groups of genes

in human cells [39].

Therefore, CKM often acts as an independent factor

of gene expression regulation that functions in a context-

dependent manner. The involvement of CKM in the

expression regulation is determined not only by its kinase

activity, but also through its interaction with other tran-

scription factors (see below).

ROLE OF MEDIATOR IN ORGANIZATION

OF TRANSCRIPTION

Localization of Mediator on chromatin in higher

eukaryotes demonstrated that Mediator preferentially

binds to enhancers throughout the whole genome [48].

Also, Mediator is typical for large enhancer clusters that

initiate tissue-specific transcriptional programs (so-

called super-enhancers) [49]. In yeast, Mediator was

detected on the majority of the upstream activating

sequences (UASs) that serve as the analogs of enhancers

located upstream of the promoters [5, 50].

Mediator recruitment to enhancers occurs mostly

via interaction of its tail and middle modules with tran-

scriptional activators [2, 51, 52]. Deletion of individual

subunits of the tail module results in the inability of

Mediator to bind to UASs throughout the entire yeast

genome [53, 54].

CKM can play different roles in the recruitment of

Mediator to enhancers. In some loci, it acts as a binding

antagonist. Thus, removal of the CKM Med13 subunit in

yeast increases the amount of Mediator bound to certain

UASs [54]. The kinase activity of CKM blocks Mediator-

mediated activation of target genes in the EGFR/

Ras/ERK signaling pathway in Caenorhabditis elegans

[55]. Cdk8 and Cdk19 suppress the activity of super-

enhancers in the AML cell line [51]. It is believed that in

such cases CKM is required for the fine regulation of

recruitment of Mediator to UASs and enhancers [5]. At

the same time, CKM can play a role of coactivator for

other genes. For example, Cdk8 is required for the activa-

tion of the estrogen receptor target genes in humans [56].

CKM is recruited to promoters of target genes during

stimulation of the TRL9 receptor; it cooperates with the

transcription factors C/EBPβ and NF-κB [57]. Cdk8 and

CycC are coactivators of the Drosophila ecdysone recep-

tor [58]. These facts may explain the gene-specific role of

CKM in the regulation of gene expression.

Transcription activation in eukaryotes involves phys-

ical contacts between an enhancer and a promoter. Using

sequential chromatin immunoprecipitation, Petrenko et

al. [54] were first to demonstrate the existence of a single
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Mediator complex that simultaneously associates with an

enhancer and a promoter, thereby corroborating the con-

cept that Mediator acts as a dynamic bridge for these two

regulatory elements.

The presence of Mediator on yeast promoters is dif-

ficult to demonstrate by chromatin immunoprecipitation

[59]. The amount of Mediator on a promoter significant-

ly increases when TFIIH kinase is inhibited, what signif-

icantly stabilizes PIC [53, 54]. The reason for a weak sig-

nal from the promoter is that the interaction of Mediator

with PIC is very short-termed (estimated time, 1/8 s)

[60]. Despite its short duration, it is this involvement of

Mediator in PIC formation that is believed to be its major

genome-wide function [5, 61]. In yeast, promoter- and

enhancer-bound Mediator complexes have different sub-

unit composition (promoter-bound Mediator lacks the

CKM) [53, 54]. The interaction between the enhancer

and the promoter is provided by the Mediator in the

absence of CKM.

The major target of Mediator complex on a promot-

er is Pol II CTD, which acts as a scaffold for many tran-

scription factors and serves as a coordinator of the entire

transcription process [62]. Besides, Mediator regulates

recruitment and activity of other PIC components, such

as general transcription factors TFIIA, B, D, E, and F

[50, 63-65], and stimulates recruitment and enzymatic

activity of TFIIH [66, 67]. Structural analysis revealed

that Mediator forms direct contacts with these factors

while being a part of the PIC [8, 12, 13] (Fig. 1f). In addi-

tion to a purely structural role in PIC assembly, Mediator

is essential for coordination of the sequential processes

involved in PIC assembly on the promoter [68, 69] – the

role of Mediator in this process depends on the promoter

architecture [63, 70].

At the initial stages of gene activation, Mediator

forms transcriptionally inactive PIC that is then activated

by CTD phosphorylation by TFIIH. This stage is stimu-

lated by Mediator [69, 71] that dissociates from the poly-

merase (as phosphorylated CTD is incapable of Mediator

binding [60, 72]) and leaves the promoter [60]. Hence,

the interaction between Mediator and TFIIH is impor-

tant for transcription initiation and Mediator dissociation

from the promoter.

Mediator also provides rapid reinitiation of tran-

scription. It was shown for the HIV-1 promoter that rapid

Mediator-dependent reinitiation of transcription results

in the appearance of polymerase convoys (groups of poly-

merase molecules that move along the gene one after

another) and transcriptional bursting [73].

Beside transcription initiation, Mediator is involved

in the regulation of elongation. For instance, mutations

in the middle module of yeast Mediator do not affect

recruitment of polymerase to the promoter but decrease

its concentration in the gene transcribed region and pre-

vent a decrease in the number of nucleosomes along the

gene [74]. In vertebrates, inhibition of Cdk8/19 activity

results in the suppression of CTD phosphorylation and

inhibition of transcription elongation on the NF-κB-

controlled genes [38].

After dissociation from the promoter and synthesis of

several tens of nucleotides of the transcript, RNA poly-

merase stops. This RNA polymerase pausing plays an

important regulatory role [75]. Mediator is involved in

this process via interacting with DSIF [76], cohesin [48],

and TFIIS [77, 78]. Cooperation between Mediator and

transcription elongation factor TFIIS helps to prevent the

negative effect of a nucleosome at the start of the tran-

scribed sequence [79]. Also, Mediator from multicellular

organisms can initiate transcription in vitro if RNA poly-

merase contains the Gdown1/Pol2M subunit [80]. It was

found recently that this subunit binds to polymerase after

the start of the RNA synthesis and stabilizes the enzyme

in the paused state [81]. Possibly Mediator overcomes the

negative effect of Gdown1 and facilitates polymerase exit

from pausing [5].

P-TEFb, one of the major factors stimulating transi-

tion to elongation, could be recruited to promoters

through interaction with CKM [41] and Med26 [82].

Perhaps these two mechanisms of P-TEFb recruitment

occur in different groups of genes [83]. Cooperative

action of Mediator and P-TEFb also takes place on

enhancers, as shown for the T cell-specific enhancer

(both factors stimulated synthesis of enhancer ncRNA)

[84], enhancers of Hippo/YAP signaling pathway target

genes [85], and BRD4-controlled regulatory elements in

AML cells [86].

Med26 interacts with the EAF subunit of the super

elongation complex (SEC) to ensure initiation of elonga-

tion on some genes. Med26 knockdown does not impair

PIC assembly but suppresses SEC recruitment [87].

Interestingly, Med26 also interacts with TFIID via the

same domain that provides its binding to EAF [88].

Interaction of this subunit with alternating partners might

be the mechanism for switching between transcription

initiation and elongation. Med26 recruits the LEC initia-

tion complex to genes encoding small nuclear RNAs [89].

SEC subunits also interact with the kinase module of

Mediator [42]. Cdk8 knockdown inhibits transcription

elongation and SEC recruitment to activated promoters

[41, 42]. Cooperation between all three factors

(Mediator, SEC, and P-TEFb) is essential for the regula-

tion of transcription of genes controlling early embryonic

development in Drosophila [90].

Therefore, Mediator is involved in all stages of tran-

scription activation. Based on the existing data, the fol-

lowing mechanism of Mediator functioning was suggest-

ed [5]. Initially, the complete Mediator complex is

recruited to enhancers via transcription factors; this stage

is negatively regulated by the CKM. After CKM dissoci-

ation, Mediator is integrated into PIC, which results in

PIC stabilization. As a component of PIC, Mediator

stimulates kinase activity of TFIIH, thereby causing



428 PUTLYAEV et al.

BIOCHEMISTRY  (Moscow)   Vol.  83   No.  4   2018

phosphorylation of Ser5 residues in CTD and polymerase

escape from the promoter. Mediator dissociates from the

promoter and binds CKM, which stimulates recruitment

of factors (e.g., P-TEFb) favoring the polymerase exit

from pausing. P-TEFb phosphorylates Ser2 residues in

CTD, and polymerase starts elongation.

CKM plays a dual role in this model. Most likely, its

repressor function is not related to the enzymatic activity

but results from the binding of CKM to Mediator, since

Mediator can only bind either CKM or RNA polymerase

[20]. The activator function of CKM is related to its abil-

ity to directly bind to some transcriptional activators and

coactivators.

In the yeast nucleus, ~15% of all Mediator complex-

es interact with RNA Pol II, 15% are bound to CKM, and

therefore excluded from this interaction, and the remain-

ing 70% are in a free state [91].

It is important to emphasize that Mediator is not an

obligatory component of PIC, however, it stimulates con-

sequent stages of PIC maturation on the promoter. Also,

some Mediator subunits can be functionally duplicated by

other factors. Thus, deletion of individual Mediator sub-

units produces very moderate effect on yeast transcrip-

tion, and only impairments in all three modules – head,

middle, and tail – significantly disturb cell translation

and viability [70].

Mediator is also involved in posttranscriptional

events. Med23 interacts with mRNA-processing factors

and regulates alternative splicing and alternative mRNA

polyadenylation [92]. Mediator directly binds various fac-

tors regulating mRNA 3′-end processing and mRNA

degradation [93]. The Med31/Med7N module interacts

with the mRNA nuclear export factor TREX-2.

Interestingly, the latter is required for the binding of

CKM to Mediator and regulates Mediator binding to

polymerase [94].

ROLE OF MEDIATOR IN REGULATION

OF CHROMATIN STRUCTURE

In addition to direct interaction with transcription

machinery components, Mediator controls gene activity

by regulating chromatin structure. Mediator binds to

chromatin through association with histone H3 and H4

tails [95, 96]. It also interacts with chromatin-remodeling

and chromatin-modifying factors.

Mediator participates in keeping promoter regions of

active genes in a nucleosome-free state. It was found to

interact with the chromatin-remodeling complex

SWI/SNF in yeast [97, 98]. In humans, CKM interacts

with Brg1 [99]. The yeast Med15 subunit binds to the

Hrp1 remodeling factor of the CHD1 family [100];

Med15 interacts with CHD1 in mouse cells, and the

resulting complex is recruited by active genes [101].

Binding of Mediator to the yeast HO gene requires

recruitment of the SWI/SNF complex [102]. For some

genes, on the contrary, recruitment of the SWI/SNF

complex happens after binding of Mediator to the genes

[97, 98, 103]. Therefore, cooperation between Mediator

and remodeling factors is tissue-specific. Moreover, the

presence of Mediator in the content of PIC on a promot-

er is important for DNA dissociation from nucleosomes

irrespectively of the chromatin remodeling factors [104].

Mediator regulates epigenetic events. For instance,

mediator and histone acetyltransferase p300 function

synergistically during estrogen receptor transcription in

human cells [105] and on active enhancers of mouse

hemopoietic cells [106]. Mediator can be recruited to tar-

get genes of frog androgen and thyroid hormone recep-

tors directly or via interaction with p300 [107]. In human

cells, Mediator binds to the histone acetyltransferase

Gcn5 [108]. The two proteins function cooperatively:

Gcn5 together with Cdk8 perform tandem modification

of histone H3 [109]. Yeast have promoters that recruit the

histone acetyltransferase complex SAGA and Mediator in

a coordinated manner [110, 111]. However, yeast cells

also have promoters to which these complexes bind inde-

pendently of each other [112, 113]. In higher eukaryotes,

Mediator is recruited cooperatively with the histone

acetyltransferase complexes STAGA [114, 115] and

ATAC [116].

Mediator also plays a role in H2B ubiquitination. In

human cells, Med23 recruits the corresponding

RNF20/40 enzyme to chromatin [117].

Therefore, Mediator is involved in the recruitment of

complexes that establish active chromatin markers.

However, Mediator also participates in epigenetic repres-

sion, mostly via its kinase module. Gene-specific sup-

pression of trimethylation of the H3K4 residue by CKM

[118] was found in yeast. It was demonstrated for one of

these genes that CKM blocks the binding of the chro-

matin-modifying Set1p/COMPASS activator complex

[40]. In mammals, downregulation of neuronal genes

outside of the nervous system is mediated by the

Mediator-dependent recruitment of histone methyltrans-

ferase G9a, and this function of Mediator depends on

CKM [119]. Repression of immune response genes in

humans depends on the Mediator-mediated recruitment

of arginine methyltransferase PRMT5; in this case, bind-

ing occurs also via the kinase module [120].

Mediator is involved in epigenetic transcriptional

memory. In yeast, CKM binds to the INO1 gene in the

memory state (the gene is switched off but can be easily

reactivated), which is important for polymerase recruit-

ment and pausing for further transcription initiation. This

mechanism is evolutionarily conserved – it was also

found for the IFNγ-induced genes in human cells [121].

Mediator binds the Polycomb group complexes that

repress certain genes in ontogenesis. Cdk8 knockdown in

a mouse cancer model resulted in reduction in histone

H3K27 trimethylation and derepression of the
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Polycomb-regulated genes [122]. CKM binds the EZH2

and SUZ12 subunits of the PRC2 complex in humans;

this interaction is essential for the timely activation of

neuronal genes during development [123]. The CKM

subunit Med12 operates together with PRC1 to silence

key developmental genes in mouse pluripotent cells.

During cell differentiation, Med12 dissociates from

PRC1, and Mediator converts from a transcriptional

repressor to a transcriptional enhancer [124]. There are

also some evidences indicating that Mediator can coun-

teract the Polycomb-dependent repression – its subunit

Med25 blocks the binding of PRC2 to the gene targets of

HFN4α [125].

Finally, Mediator is involved in the formation and

maintenance of the structure of pericentric and telomeric

heterochromatin [1] and in the establishment of borders

between active and inactive chromatin in yeast [126]. In

accordance with it, Med26 (but not other subunits) was

found in the pericentric heterochromatin in Drosophila

[16]. Perhaps this subunit has a specific function that dif-

fers from the functions of the complex. Mediator is also

required for the synthesis and processing of centromeric

ncRNAs involved in heterochromatin formation in yeast

and plants [127-129]. In telomeric heterochromatin of

yeast, Mediator operates together with histone deacety-

lase Sir2 [130].

Therefore, due to many interactions with enzymes

that modify chromatin, Mediator acts as an important

factor in epigenetic events in all genome regions in a

broad range of living organisms.

ROLE OF MEDIATOR IN CHROMATIN

ARCHITECTURE FORMATION

The presence of Mediator at a certain locus does not

always correlate with the transcriptional activity of this

locus. In both yeast and higher eukaryotes, Mediator has

been found on many regulatory elements along the entire

genome regardless of their activity [48, 53]. It was sug-

gested that besides regulating gene activity, Mediator is

important for maintaining general chromatin architec-

ture [50]. Indeed, Mediator plays an essential role in the

formation of contacts between gene regulatory elements

in higher eukaryotes [131-134]. Such contacts are a struc-

tural feature of DNA packing in higher eukaryotes.

Interactions between enhancer-anchored Mediator and

promoter-bound PIC are short-termed, as mentioned

above, and most probably cannot serve as a basis for the

formation of stable contacts in chromatin.

One of the proteins involved in the formation of

long-range contacts in chromatin is cohesin. In mouse

cells, Mediator and cohesin interact, and the resulting

complex binds to the factor Nipbl that provides cohesin

docking on DNA. The loci that bind Mediator and

cohesin form long-range contacts in a process that

depends on Med12; the pattern of such contacts is tissue-

specific [48, 108]. Synergistic action of Med12 and Nipbl

was also shown in the Danio rerio zebrafish [135]. In

human cells, Mediator and cohesin act synergistically to

maintain cell type [136]. Analysis of chromatin packing

hierarchy in mammalian cells showed that Mediator and

cohesin are required for the formation of short-range (up

to 100 kb) tissue-specific contacts between enhancers and

promoters, while CTCF and cohesin are important for

the establishment of stable long-range (over 1000 kb)

contacts. Formation of short-range contacts depends on

Med12. There are also small loops (600-1000 bp), the

formation of which is regulated by Mediator, but not by

cohesin [137]. At the same time, Mediator is not an oblig-

atory component of the enhancer–promoter contacts in

the genome – both Mediator-independent and cohesin-

independent contacts were described for the beta-globin

locus [138].

Although gene regulation in yeast does not proceed

via formation of long-range contacts [139], in these

organisms Mediator determines the distance over which

UASs can activate transcription [140]. In yeast, Mediator

is also involved in the formation of contacts between the

5′- and 3′-ends of genes [141], general packing of chro-

mosomes, and formation of chromatin domains (lack of

Mediator results in chromatin decompaction in the

nucleus) [142]. Analysis of the distribution of Mediator in

the yeast genome showed that it is more abundant at the

boundaries of the so-called chromosomal interacting

domain (CIDs), which are analogs of TADs (topological-

ly associating domains) in higher organisms. Mediator is

also associated with various factors involved in the organ-

ization of general chromatin structure in the yeast nucle-

us [93]. Therefore, Mediator has an evolutionarily con-

served function involving regulation of distant genomic

elements and control of chromatin packing in the nucle-

us of all eukaryotic organisms.

Other molecules required for the formation of long-

range interactions are ncRNAs. It was found that

ncRNA-a (one of the classes of mammalian ncRNAs

involved in gene activation) interacts with Med12.

Mediator is recruited to the sites of synthesis of this RNA;

ncRNA-a and Mediator operate together to promote

long-range interactions and to activate target genes [143].

In a similar manner, Mediator is required for the activity

of enhancer RNAs synthesized on active enhancers, as it

was shown for the target genes of androgen receptor [144]

and PPARγ receptor [145].

Therefore, Mediator plays an important role not

only in transcription, but also in the formation of contacts

between distant genome loci. Perhaps such broad activity

of Mediator is related to its ability to interact with differ-

ent types of molecules, including ncRNAs.

Mediator is believed to be a structural integrating

complex that participates in the coordinated recruitment
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of various activities toward genomic loci. Recent descrip-

tion of the Mediator interactome in yeast corroborated

and extended this model [91]. More than 400 Mediator-

interacting proteins with different functions were identi-

fied. In addition to the earlier described partners,

Mediator was found to interact with FACT chaperones

Spt16 and Pob3, chromatin-remodeling factors ISWI and

INO80, acetylated and trimethylated histones, and pro-

teins involved in mRNA processing such as polyA-bind-

ing protein (PABP), proteins of RNA splicing apparatus,

decapping proteins, and Xrn1, which is a protein partici-

pating in mRNA degradation. Interestingly, Mediator

copurifies with Pol I and III; it interacts with all 14 sub-

units of Pol I, as well as with the initiator complex pro-

teins and factors of RNA processing and ribosome bio-

genesis. In Pol III, Mediator interacted with its two large

subunits and two components of the initiator complex –

TFIIIB and TFIIIC. These data indicate that the role of

Mediator in transcription is much broader than it had

been believed before (Fig. 2).

Despite a considerable progress in understanding of

the Mediator’s functional role, many mechanisms of its

action still require further investigation. Thus, the struc-

ture of Mediator complex in higher eukaryotes and con-

tribution of subunits specific for the multicellular organ-

isms remain poorly studied. It is still unclear if the com-

plex has varying subunit composition. Among other unre-

solved problems are structural rearrangements that occur

during binding of Mediator to activators and PIC and the

role of these rearrangements in the activity of the com-

plex. The mechanism of CKM binding to Mediator and

the role of kinase in the regulation of gene activity are to

be studied as well. The structural basis of interactions of

Mediator with other factors often remains obscure. Thus,

almost nothing is known about interactions of Mediator

with ncRNAs. It remains unclear if Mediator’s binding to

RNA is sequence-specific, and how such binding affects

the structure and functions of Mediator.

The involvement of Mediator in the formation of

chromatin architecture is apparently not limited to

cohesin binding. It was shown recently that formation of

chromatin loops requires participation of many different

factors [146]. It seems reasonable to suggest that Mediator

acts as a recruiter for these factors. According to another

hypothesis, interaction of Mediator with CTD stabilizes

long-range contacts in the genome. Since CTDs of high-

er eukaryotes are long, perhaps they can stimulate forma-

tion of long-range enhancer–promoter contacts [1].

Another interesting hypothesis is that the Mediator

could be involved in formation of transcription factories.

The presence of IDR domains in subunits of the complex

might indicate its ability to form a separate phase in the

nucleus [1]. IDR domains are common in transcription

factors [62, 147, 148], which might be the basis for the

Fig. 2. Major functions and interaction partners of Mediator complex: GTFs, general transcriptions factors; HATs, histone acyltransferases;

ncRNA, noncoding mRNA; remodelers, chromatin-remodeling factors; TFs, transcription factors. Putative involvement of Pol I and Pol III

is indicated with a dashed line.
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concentration of RNA polymerase and general transcrip-

tion factors into discrete sites inside the regions of tran-

scription. The role of separate protein phase formation in

the nucleus has been demonstrated recently for the hete-

rochromatin protein HP1α [149].
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