
NUCLEAR ENVELOPE ORGANIZATION

Nuclear envelope delimits the nucleus from the

cytoplasm. It is composed of two lipid bilayer membranes

separated by the perinuclear space. The envelope is

pierced by nuclear pores – large nucleoporin protein

complexes, through which macromolecules are

exchanged between the nucleus and the cytoplasm. From

the nuclear side, the envelope is lined with a protein

meshwork of lamins (type V intermediate filaments clas-

sified as A- and B-type lamins depending on whether they

are expressed in all cells or only in certain tissues) and

lamin-associated proteins anchored in the nuclear mem-

brane [1, 2]. The number of lamin-encoding genes has

increased during the evolution. Thus, Caenorhabditis ele-

gans has a single gene coding for lamin (lmn-1),

Drosophila has two genes (lamC and Dm0 coding for A-

and B-type lamins, respectively), and mammals have

three genes (Lmnb1, Lmnb2, and LmnA). Unlike B-type

lamins, mammalian A-type lamins (but not those of

Drosophila) form a meshwork of filaments not only at the

surface, but also inside the nucleus. The nuclear lamina is

found in all multicellular animals and has both structural

and regulatory functions: it keeps the shape and mechan-

ical stability of the nucleus, provides interactions between

the nucleus and the cytoskeleton, and participates in the

regulation of transcription, replication, and genome sta-

bility. Defects in the nuclear lamina in humans cause dis-

orders with various clinical manifestations collectively

named laminopathies [3].

HETEROCHROMATIN ORGANIZATION

Eukaryotic chromosomes are composed of decon-

densed euchromatin that includes the majority of actively

expressed genes and a more tightly packed constitutive

heterochromatin that is located in the pericentromeric

and subtelomeric regions of chromosomes and contains

highly and moderately repetitive DNA sequences. Also,

euchromatin chromosome shoulders contain regions of

facultative, or intercalary, heterochromatin that encom-

pass mostly silent genes and copies of mobile genetic ele-

ments [4, 5]. Microscopy studies showed that in the

majority of mammalian cells, constitutive and facultative

heterochromatin is located at the nuclear periphery and

around the nucleoli [6]. Detection of the so-called invert-

ed nuclear architecture in the retina cells of mammals

with nocturnal vision became a sensational discovery. In

these cells, multiple chromocenters (constitutive hete-

rochromatin foci) normally located at the nuclear periph-

ery merge in a single chromocenter in the center of the

nucleus, while euchromatin resides close to the nuclear
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envelope [6]. It was shown that the lack of two compo-

nents of the nuclear lamina – the A-type lamin and the

integral protein of a nuclear membrane lamin B receptor

(LBR) – is responsible for the conversion of the normal

architecture into the inverted one. In presence of any of

these proteins, both constitutive and facultative hete-

rochromatin in mammalian cells is located mostly near

the nuclear envelope [7].

The idea that heterochromatin is attached to the

nuclear envelope and not simply located in its vicinity

and that this attachment defines the ordered positioning

of chromosomes in the interphase nucleus was proposed a

long time ago [8]. Early studies on Drosophila salivary

gland cells found a number of polytene chromosome

regions to be in a visible contact with the nuclear enve-

lope in the majority of analyzed nuclei [9]. These regions

almost completely coincided with the intercalary hete-

rochromatin [10] characterized by late replication,

underreplication in the polytene chromosomes, constric-

tions, frequent breaks, frequent ectopic contacts, and

some other properties. The sites of chromosome–enve-

lope contact varied in different types of cells [11], possi-

bly reflecting their dependence on the activity of genes.

Fluorescent in situ hybridization (FISH) showed that in

cells of early Drosophila embryos, more than 75 chromo-

somal regions are in frequent contact with the nuclear

envelope [12].

During the last decade, the so-called lamina-associ-

ated domains (LADs) – extended chromosomal regions

contacting and, perhaps, attached to the nuclear lamina –

have been identified in Drosophila, mammals, and C. ele-

gans using DamID (DNA adenine methyltransferase

identification) [13] and chromatin immunoprecipitation

methods [14-26]. LADs occupy ~40% of the genome and

contain mainly genes that are silent in this particular type

of cells. They are the late-replicating genome regions,

poor in acetylated histones. In mammals and C. elegans,

LADS are enriched with histone H3 di-/trimethylated at

lysine 9 (H3K9me2/3) or trimethylated at lysine 27

(H3K27me3), generally associated with transcription

repression [15, 16, 18, 26, 27]. LADs and chromatin

domains associated with the Polycomb repressor protein

(Pc) supposedly correspond to the intercalary heterochro-

matin found in Drosophila polytene chromosomes [28].

In addition to multiple sites of contact/attachment

to the nuclear lamina, yeast, Drosophila, and mammalian

chromosomes are bound to the nuclear pore complexes

penetrating the nuclear envelope [29-44]. In the

Drosophila genome, thousands short (~2 kb) regions of

contact/attachment of chromosomes to the nuclear pores

were identified by the DamID method. Moreover, they

were found in both active and inactive chromatin [39],

which suggests sequence-specific recognition of these

regions by yet unidentified components of the nuclear

pore complexes. It should be mentioned that in multicel-

lular organisms, nucleoporins (components of the

nuclear pore complexes) bind to chromatin not only on

the nuclear envelope but also in the nucleoplasm; more-

over, in the latter case, they play a role of transcription

coactivators [39-41, 43-46].

The data confirming the hypothesis that many chro-

mosomal regions not just contact but attach to the

nuclear envelope have been obtained rather recently in

experiments on the localization of individual chromoso-

mal loci after depletion of lamin or other components of

the nuclear lamina in Drosophila, C. elegans, and mam-

malian cells using the FISH method. The loci studied lost

their preferential peripheral location and moved toward

the nuclear interior [47-51]. It should be noted that lamin

depletion has an impact on the integrity of the whole

nuclear lamina, affecting location of many integral pro-

teins of the nuclear membrane and the nuclear pore com-

plex [52-54]. Therefore, it is unlikely that the lamin is

responsible for the attachment of chromatin to the

nuclear envelope. Other components of the nuclear lam-

ina or the nuclear pore complexes might be involved in

this process as well. For example, after the depletion of

one of the nucleoporins (Nup153) in Drosophila SL-2

cells, a number of X-chromosome fragments enriched

with nucleoporin association were localized further from

the nuclear envelope than in the control cells [40], while

in mouse embryonic stem cells, several loci located at the

nuclear periphery moved towards the nuclear interior

[42], thereby indicating that nuclear pore complexes are

involved in the maintenance of chromosome architecture

in the nucleus.

MECHANISMS OF LAD ATTACHMENT

TO THE NUCLEAR ENVELOPE

Despite the long history of LAD studies, it still

remains unclear how LADs attach to the nuclear enve-

lope. Theoretically, nuclear lamina proteins can bind

either DNA or modified histones in LADs (or both).

Both types of interactions were found in mammalian

cells. For example, the repressor protein cKrox, which

binds to (GA)n tracks in DNA, forms a complex with the

HDAC3 histone deacetylase and the integral nuclear

membrane protein Lap2β that participates in the attach-

ment of several LADs to the nuclear envelope in mouse

fibroblasts [49]. Moreover, proteomic analysis revealed

the presence of HDAC3 in complexes with lamina pro-

teins in mammalian cells [55, 56]. In mouse embryonic

stem cells, HDAC3 (independently of its catalytic activi-

ty and together with Lap2β) is involved in the mainte-

nance of peripheral localization of several loci (Fig. 1)

[57]. These data illustrate the mechanism of sequence-

specific attachment. There are also examples of interac-

tions based on the recognition of a certain type of inactive

chromatin. As mammalian LADs are enriched with

H3K9me2/3 throughout their entire length [15, 17, 57-
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59], the presence of this modification being essential for

maintaining their peripheral location [59-62]. Besides,

the borders of mammalian LADs contain the H3K27me3

mark [15] that participates in the attachment of LADs to

the nuclear envelope [62] with the involvement of the

DNA-binding protein YY1 (Fig. 1) [61]. Moreover, in C.

elegans, H3K9me2/3 histone modification is necessary

for the location of the transgene carrying an extended

heterochromatin repeat at the nuclear periphery [63, 64].

Interestingly, Drosophila LADs, which have been till

now mapped only in Kc167 cells [18], are not enriched

with either H3K9me2/3 or the main heterochromatin

protein HP1a [65]. Therefore, if in other types of

Drosophila cells the mechanism of H3K9me2/3-modified

chromatin binding with the nuclear envelope exists, it is

obviously not the only one. In Kc167 cells, LADs overlap

with approximately 40% of Pc domains; hence, these

LADs are enriched with H3K27me3 [18]. However, the

role of this modification in the chromatin attachment to

the nuclear lamina in Drosophila has not been studied.

The depletion of HDAC3 in Drosophila S2 cells led to the

removal of the 60D1 locus from the nuclear envelope,

indicating that the sequence-specific recognition involv-

ing HDAC3, similar to that in mammals, also exist in

Drosophila [66].

Proteins that presumably introduce repressive his-

tone modifications into LAD chromatin include histone

methyltransferase G9a (MET-2 in C. elegans) and histone

deacetylase HDAC3, since mutations or knockdown of

the corresponding genes result in the loss of interactions

between LADs and nuclear envelope in Drosophila [66],

mammals [49, 57, 59, 60, 62], and C. elegans [63].

Which proteins of the nuclear lamina are responsible

for the chromatin attachment to the nuclear envelope? In

vitro experiments showed that lamins are able to bind

DNA directly, but they can also bind chromatin and his-

tones H2A and H2B [67-72]. However, this type of inter-

actions does not explain specific binding of inactive chro-

matin to the nuclear lamina. It is possible that other com-

ponents of the nuclear lamina also bind chromatin [73,

74]. For example, it was shown that LBR binds HP1 [75]

and thus can probably interact with H3K9me2/3-modi-

fied histones in mammalian LADs (Fig. 1). However,

LBR and HP1 bind each other indirectly, through the his-

tone H3/H4 dimer; acetylation of this histone prevents

interaction between these two proteins [76, 77].

Moreover, LBR can bind the H4K20me2 mark of the

peripheral heterochromatin both in vitro and in vivo (Fig.

1) [78]. It is important to note that in a number of stud-

ies, LBR was shown to be indispensable for the mainte-

nance of the peripheral location of pericentromeric hete-

rochromatin in mammals [7, 79-81]. Taken together,

these data suggest that LBR is directly involved in the

attachment of the constitutive heterochromatin and,

probably, LADs to the nuclear envelope in mammals.

Another lamina-associated protein, Lap2β, which

belongs to the LEM-domain protein family, is also

involved in the attachment of at least several LADs to the

nuclear envelope in mammals [49]. The PRR14 protein

associated with the nuclear lamina in mammals was

found to bind H3K9-methylated heterochromatin (pre-

sumably via interaction between PRR14 and HP1) and to

attach it to the nuclear envelope (Fig. 1) [51]. The C. ele-

gans protein CEC-4, that is localized at the nuclear

periphery and contains a chromodomain (similarly to

HP1), is able to anchor the H3K9-methylated chromatin

to the nuclear envelope [64]. Finally, screening of human

cells revealed several new nuclear envelope transmem-

Fig. 1. Known mechanisms of chromatin attachment to the nuclear envelope in mammals, C. elegans, and Drosophila.
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brane proteins, whose expression increased and deple-

tion, to the contrary, reduced the portion of cells with

peripheral location of certain chromosomes [82]. Further

analysis showed that some of these proteins specifically

retain certain gene loci at the periphery of the nucleus,

which provides gene repression necessary for tissue-spe-

cific cell differentiation [83]. Unfortunately, there are still

no data on the factors involved in the attachment of LADs

and/or constitutive heterochromatin to the nuclear enve-

lope in Drosophila.

CHROMATIN ATTACHMENT TO THE NUCLEAR

ENVELOPE IN INDIVIDUAL CELLS

Mapping of LADs by DamID or chromatin

immunoprecipitation gives an averaged distribution pat-

tern of the sites of chromosome attachment to the nuclear

lamina in a cell population. At the same time, numerous

data obtained by FISH showed considerable variability in

the positions of loci relative to the nuclear envelope in

individual cells of the same homogeneous population.

Therefore, studies of the sites of chromatin attachment to

the nuclear lamina in individual cells are of considerable

interest. Recently, two new approaches have been devel-

oped for this purpose. The first one consisted in the bind-

ing of the EGFP–DpnI hybrid protein, expressed in

human cells, to the chromosome fragments, in which

adenine in the GATC sequences was methylated with E.

coli Dam methylase fused to B-type lamin. The authors

[59] found that in living cells, EGFP-labeled LADs con-

taining methylated adenine were in contact with the

nuclear lamina [59]. This gave a possibility to trace

nuclear localization of LADs at different stages of the cell

cycle. It was found that in individual cells, no more than

one third of LADs were located at the nuclear periphery.

During mitotic division, LADs were randomly redistrib-

uted between the nuclear periphery and interior – more

than a half of chromosomal regions bound to the nuclear

lamina before mitosis were moved away from it [59].

Similar conclusions were made using the DamID analysis

of lamin in individual human cells [84]. Only a small

number of LADs mapped as nuclear periphery-associated

in cell populations are in contact with the nuclear lamina

in every single cell. The authors showed that only ~15%

LADs are in contact with lamina in every cell. It was also

demonstrated that in each individual cell, long chromo-

somal regions (6-8 Mb) can be synchronously located

either near to or far from the nuclear lamina [84].

Therefore, long regions of chromosome fiber (containing

both LADs and inter-LAD sequences) can be localized

near the nuclear envelope in a portion of a cell popula-

tion, while in the other portion of the same population,

the same long fragments can be located closer to the cen-

ter of the nucleus. When a chromosome fiber is located

close to the nuclear envelope, its regions of inactive chro-

Fig. 2. LADs can compete for binding to the nuclear envelope.
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matin (LADs) are attached to the lamina, while the

regions of active chromatin (inter-LADs) are looping out

to the nucleoplasm (Fig. 2) [85].

LADs that move toward the nuclear interior during

mitosis no longer experience the repressive influence of

the nuclear lamina (see the next section). Therefore,

although it is possible that the repressed state of chromatin

can be transferred epigenetically from one cell generation

to another, one could expect some chromatin derepres-

sion during divisions. Indeed, such repression weakening

was demonstrated in [59]; however, it is insufficient to

trigger the locus into the actively transcribed state.

Why only a portion of inactive chromatin, potential-

ly capable of binding to the nuclear envelope, is located at

the nuclear periphery? A possible explanation for this

phenomenon was suggested in [84]. Human KBM7 cells

can spontaneously pass from the haploid state into the

diploid state. The authors performed DamID analysis in

individual cells (both haploid and diploid) and found a

significant decrease in the Dam-lamin methylation per

one chromosome dose in diploid cells compared to the

haploid ones. Based on these results, the authors suggest-

ed that there might be a competition between different

LADs for a limited number of binding sites at the nuclear

lamina [84]. If this hypothesis is correct, the limited

number of sites for chromatin binding on the nuclear

envelope can explain a small portion of LADs forming

contacts with lamina in individual cells (Fig. 2). However,

this problem requires additional studies.

NUCLER LAMINA INDUCES TRANSCRIPTIONAL

REPRESSION OF CONTACTING GENES 

The hypothesis that nuclear lamina is a compart-

ment poorly compatible with transcription is supported

by numerous experimental data. FISH analysis of multi-

ple loci in different types of cells in different organisms

shows strong correlation between the expression or

silencing of genes in certain type of cells and their loca-

tion far from or close to the nuclear envelope, respective-

ly [47, 50, 57, 61, 86-98]. Moreover, in mammals, chro-

mosomal regions attached to the nuclear envelope vary

depending on the cell type. During cell differentiation

accompanied by activation of tissue-specific genes,

DamID-identified contacts between the nuclear lamina

and promoter regions of activated genes (and in many

cases, the entire genes) are considerably weakened or

completely lost [17]. Finally, artificial tethering of the

transcriptional activator to the inactive locus results in its

relocation from the nuclear envelope towards the nuclear

interior [24, 93, 99-101]. Interestingly, such relocation

requires chromatin remodeling and decondensation, but

not the activation of its transcription [101].

However, the location of silent genes in LADs can

either be a consequence of the nuclear lamina ability to

suppress transcription or reflects the situation when only

inactive chromatin can be attached to the lamina. In

order to study relationships between the transcription

repression and chromatin attachment to the lamina, sev-

eral experiments on the artificial tethering of a chromo-

somal region to the nuclear lamina using the LacI/lacO

system were carried out in mammalian and Drosophila

cells [102-104]. Suppression of the expression of reporter

gene, as well as of several endogenous genes located in the

vicinity of the site of chromatin attachment to the lami-

na, were observed that were accompanied by histone

deacetylation. However, when stronger promoter was

used, tethering to the nuclear lamina had no effect on the

reporter gene expression [105]. Nevertheless, these

experiments showed a potential ability of the nuclear

lamina to suppress the transcription of genes with low and

intermediate levels of expression.

Additional arguments in favor of suppression of gene

transcription by the nuclear lamina were obtained by

analysis of expression of reporter genes integrated into

different genomic regions. Such analysis showed a sys-

tematic difference in the levels of reporter gene expres-

sion depending on the gene location in either active or

inactive chromatin domains [106-108]. For example, in

mouse embryonic stem cells, the expression levels of a

reporter gene integrated into LADs were on average 5-6

times lower than the expression levels of the same gene

integrated into the inter-LADs, with extreme values

demonstrating three order of magnitude difference [108].

Studies of gene expression with the knocked-down

or knocked-out B-type lamin gene theoretically could

reveal the direct effect of the nuclear lamina on the tran-

scription of genes located in LADs. Disruption of the

nuclear lamina in C. elegans and Drosophila cells resulted

in the derepression of transcription of genes located in

LADs [47, 48, 50, 63]. It should be mentioned, however,

that genes in LADs are silent not because of their contact

with the lamina. Indeed, the ablation of lamin Dm0 in

Drosophila S2 cells led to the detachment of these genes

from the nuclear envelope, accompanied with only a 1.5-

to 3-fold increase of the number of their transcripts still

remaining sporadic in the cells [47].

Full transcriptome analysis showed that knock-out

of both B-type lamin genes (Lmnb1 and Lmnb2) in mouse

embryonic stem cells (ESCs) or trophectoderm cells

changed the transcription levels of only a very small num-

ber of genes independently of their location in LADs

[109, 110]. Therefore, the absence of lamin did not acti-

vate transcription of genes in LADs, at least in mouse

ESCs. Similarly, depletion of CEC-4 in C. elegans

embryos led to the repositioning of H3K9-methylated

chromatin from the nuclear periphery towards its interior

but was not accompanied by any significant activation of

expression of genes located in these regions [64]. It

should be kept in mind that transcriptome analysis using

microarray or RNA-seq methods does not give full infor-
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mation about the expression levels of all genes in the

genome, because these methods are not sensitive enough

to detect low-copy transcripts. As a result, about a half of

all genes that are not expressed (or poorly expressed) in

studied cells [111-113] and are potentially derepressed

upon the depletion of lamin are not identified by the

researchers.

Another question is whether the actively expressed

genes can be localized in LADs and partially repressed

because of contacts with the nuclear lamina? DamID

analysis showed than the majority of expressed genes [15-

18, 23], or at least their promoter regions [22, 114], do

not form contacts with the nuclear lamina and, thereby,

possibly escape its repressor effect. Even if promoters of

actively expressed genes are not bound to the lamina, the

bodies of these genes, especially those containing extend-

ed introns, can be in contact with the lamina [22, 62,

114]. However, the question whether all the active pro-

moters or only the majority of them avoid contacts with

the nuclear lamina is still open. Identification of several

promoters of actively expressed genes in LADs can be

explained by the errors in delimitation of the LADs bor-

ders. We cannot exclude, however, that some promoters of

active genes can be located in LADs. The average differ-

ence in the expression levels of the reporter gene inserted

in LADs and inter-LADs in mouse embryonic stem cells

was not altered after the induction of its transcription

with doxycycline [108], which indicates that transcription

not only of silent, but also of the expressed reporter gene

in LAD was partially repressed. This suggests that tran-

scription of genes, whose promoters remain in contact

with the nuclear lamina (if such promoters exist), can also

be partially repressed, at least, in mammalian cells.

Then why does the knock-out of the Lmnb1 gene in

mice cause multiple defects in different organs (in partic-

ular, brain) and animal death at early stage of develop-

ment, as well as knock-downs of the lamin Dm0 gene in

Drosophila and the lmn-1 gene in C. elegans lead to

embryonic lethality [109, 115-119]? Are these defects

caused by the derepression of genes in LADs or by other

effects related to the nuclear lamina disruption? For

example, conditional knock-out of the Lmnb1 gene in

mouse olfactory neurons causes significant changes in the

transcriptome and properties of these cells [54]; however,

the authors explained these changes not by the disruption

of contacts between genes and the nuclear envelope, but

by abnormal functioning of the nuclear pores caused by

their clustering on the nuclear membrane following lamin

depletion [54, 120]. Interpretation of these and other

results is also complicated by the fact that LADs in mouse

and Drosophila organs and tissues have not been mapped

yet.

Summarizing, the available data demonstrate that

nuclear lamina does not play a significant role in the tran-

scription repression of genes located in LADs; this

repression affects primarily the silent genes (at least, in

embryonic cells). Chromatin in LADs is more compact,

compared to that in inter-LADs [62, 121, 122]. This can

be, at least partially, due to the contacts with lamina,

since depletion of lamin leads to chromatin decom-

paction in Drosophila [66]. The more compact state of

chromatin in LADs reduces the probability of nonspecif-

ic recruitment of transcription factors to the promoter

regions of genes located in LADs, thereby, suppressing

their low-level background transcription.

QUESTIONS TO BE ANSWERED

Even with the use of modern techniques, such as

DamID in single cells and super-resolution microscopy,

in the studies of chromosome architecture, many ques-

tions still remain open. Despite significant progress in the

understanding of mechanisms of chromatin attachment

to the nuclear envelope, not all factors involved in this

process have been identified. It is still unclear, which pro-

tein complexes bound to the nuclear lamina are involved

in the repression/compaction of chromatin that is in con-

tact with them and why the remodeled chromatin loses

this connection. The impact of chromatin binding to the

nuclear envelope on the overall chromosome architecture

in the nucleus is also poorly understood. It was shown

that this binding is important in human cells, since deple-

tion of lamin A/C results in the relocation of the majori-

ty of LADs away from the nuclear envelope and in con-

siderable perturbations of chromosomal territories, in

particular, in the increased intermingling of inactive and

active chromatin [62]. These disturbances can change the

number of contacts between active loci, which might

explain alterations in the expression of genes located out-

side LADs. It is especially interesting, as the reasons of

why the absence of lamin causes serious problems in cer-

tain tissue and organs are still obscure. Finally, it is not

known at which stages of cell cycle the repression occurs

and how it is transferred through cell generations.

Elucidation of these and other questions is necessary for

better understanding of fundamental mechanisms of

eukaryotic cell functioning, in particular, of aging and

development of laminopathies in humans.
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