
Protein folding is a physical process during which a

protein chain acquires its native (biologically functional)

spatial structure “by itself”.

The spontaneous folding phenomenon was discov-

ered by Anfinsen’s group in 1961 [1] on the example of

spontaneous restoration of biochemical activity and “cor-

rect” S–S bonds in vitro in bovine ribonuclease A after its

complete (including elimination of all S–S bonds)

unfolding by a denaturing agent followed by returning it

back to the “native” conditions. This discovery was fur-

ther confirmed for many other proteins that were not sub-

ject to substantial posttranslational modification [2, 3].

In a living cell, a protein is synthesized on a ribosome

and “matures under the care” of special protein-chaper-

ones. Synthesis of a protein chain occurs during seconds

to minutes. Overall production of the “complete” folded

protein requires approximately the same period of time –

there is no difference in the experiment [2-4].

Thus, one might suggest that protein folding starts on

the ribosome even before completion of the synthesis of

the protein chain. Apparently, this is the case for large

multidomain proteins. Thus, luciferase (approximately

540 a.a.-long and folded into at least two domains) is

active immediately after biosynthesis [4]. Apparently,

folding of such a large protein in vitro can occur during a

biologically-reasonable time interval, i.e. minutes (see

Figs. 5 and 9 below), only in the case of “domain-by-

domain” formation of its structure, which can be facili-

tated by the stepwise appearance of a protein chain from

the ribosome. It is also known that the relatively small

(about 150 a.a.) globin chain is already able to bind its lig-

and (heme) when the ribosome has only synthesized a lit-

tle more than half of it [5]. These and similar facts lead to

the assumption that cotranslational (and chaperone-

dependent) folding of a protein chain in vivo significantly

differs from its folding in vitro.

However, there is no noticeable difference between

cotranslational in vivo folding and in vitro renaturation in

the case of small single-domain proteins. According to

some recent works [6-8], in the case of such proteins

(which being labeled by 15N and 13C isotopes can be dis-

tinguished from the background of ribosomes and other

cellular machinery) “polypeptides [on ribosomes] remain

unstructured during elongation but fold into a compact,

native-like structure when the entire sequence is avail-

able” [6, 7], and “cotranslational folding … proceeds

through a compact, non-native conformation [i.e. appar-

ently, through something like a molten globule – AF],

…the compact state rearranges into a native-like structure

immediately after the full domain sequence has emerged
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from the ribosome” [8]. Thus, in vivo, on the ribosome,

an incomplete single-domain protein chain behaves as a

shortened by several C-terminal amino acid residues in

vitro: it does not form a certain spatial structure [9].

Two conclusions may be drawn from cotranslational

behavior of small proteins.

First, it (similarly to behavior of the heme-binding N-

terminal half of the globin chain, see above) is reminiscent

of the behavior of “natively unfolded” proteins [10, 11], the

majority of which represent molten globules and acquire

certain spatial structure only upon binding a ligand.

Second, both in vivo and in vitro native structures

emerge only in complete amino acid protein sequences

(or in protein domains whose chains are usually sufficient

for formation of their proper structures [12]).

Lack of a principal difference in folding is also true

for participation of chaperones (whose main function is

prevention of protein aggregation in the dense “cellular

soup” [13]). Discovery of chaperones suggested that they

possessed “structure-forming” catalytic activity (see, for

instance, [14] and references therein); thus, formation of

protein structure might proceed in completely different

ways in vivo and in vitro. However, analysis of data provid-

ed in the work [14] showed that the best-studied chaper-

one, GroEL, does not accelerate protein folding [15];

these data rather confirm the previous conclusion [16,

17], that GroEL acts as a temporary “trap”, which binds

folding protein chains present in abundance, thus pre-

venting their irreversible aggregation.

Therefore, Anfinsen’s discovery of spontaneous fold-

ing in vitro [1, 18] (further confirmed for a number of

other proteins), lack of cotranslational formation of

native structures in incomplete proteins [6-8] along with

the possibility of chemical synthesis of a polypeptide

chain, which spontaneously folds into an active protein

(experiments of Merrifield et al. [19]), – all this allows, to

a first approximation, separating the spontaneous struc-

ture formation of a protein (at least, for a single-domain

one) from its biosynthesis.

The present review focuses on exactly the sponta-

neous formation of a structure of a single-domain globu-

lar protein, i.e. on its in vitro folding.

HISTORICAL EXCURSUS

The ability of a protein chain to spontaneously fold

into a complex spatial structure has been puzzling

researchers for a long time: the chain must find its native

structure (and the most stable one, as this structure is

found both in vitro and during biogenesis, i.e. starting

from various initial conditions) among a countless num-

ber of others during several minutes or seconds that are

allocated by biology.

The number is truly great [20, 21]: at least 2100 struc-

tures, but it is rather 3100 or 10100 or even 100100 for a chain

of 100 residues, as each residue can adopt at least two

(“correct” and “wrong”), but rather even three (α, β,

“coil”) or 10 [22] or even (10_by_ϕ) × (10_by_ψ) = 100

conformations [21]; thus, their “brute force” search

should take about ∼2100, or 3100, or 10100, or 100100 ps

assuming that transition between conformations requires

about 1 ps (the period of a thermal oscillation); this cor-

responds to ∼1010, or 1025, or 1080, or even 10180 years. A

full search can only be “brute force” because a protein

may “sense” conformation stability only by directly

adopting it, as 1 Å deviation can greatly increase the

chain energy in a dense protein globule.

Structural biologists and biophysicists were deeply

influenced by “Levinthal’s paradox” (E. Shakhnovich

compared this with the effect of “Fermat’s Last

Theorem” on beginning mathematicians). Furthermore,

under the influence of the hypothesis that cotranslational

(and chaperone-dependent) in vivo folding of a protein

chain significantly differs from its in vitro folding, many

people assumed that there must be two solutions to this

paradox: (i) for in vitro and (ii) for in vivo folding; and,

probably, one more solution for folding of model protein

chains in silico [B. K. Lee, remark on a seminar at NIH]!

Trying to solve his paradox, Levinthal suggested that

a native protein structure is not determined by stability,

i.e. not by the thermodynamics, but by the kinetics.

Therefore, a protein follows some special “fast” folding

pathway, and its native fold is just the end of this pathway

with no regard for whether it is the most stable one. In

other words, Levinthal assumed that native structure cor-

responds to a rapidly reachable minimum of chain free

energy rather than the global one.

However, computer experiments with lattice protein

models have convincingly demonstrated that chains folds

into their most stable structure, i.e. the “native structure

of a protein model” has the lowest energy, and thus pro-

tein folding is under thermodynamic rather than kinetic

control [23, 24].

Nevertheless, most protein folding hypotheses are

based on the “kinetic control hypothesis”.

In 1966 (even prior to Levinthal), Phillips suggested

[25] that the protein folding core is formed at the N-ter-

minus of its growing chain, whereas the remaining part is

wrapped over this core. However, it was later demonstrat-

ed that successful in vitro folding of many single-domain

proteins and protein domains does not commence at their

N-termini [26, 27].

From personal memories. The paper of Phillips in

Scientific American attracted my attention in the Moscow

Lenin Library in the same 1966. After seeing there for the

first time a picture of three-dimensional atomic protein

structure, being a third-year student of PhysTech (the

Moscow Institute of Physics and Technology), I said to

myself: “I shall never have to deal with this nightmare”,

and I was wrong…
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Several years later, Wetlaufer [28] advanced the

hypothesis that the folding core consists of residues situ-

ated close to each other in the chain. However, further in

vitro experiments showed that this was not always the case

[29].

At the same time, Ptitsyn [30] proposed a model for

hierarchic folding (Fig. 1) with stepwise involvement of

various interactions and formation of diverse intermedi-

ate states.

According to this model, protein folding proceeds

through several stages. In each of them, the most stable

(for this stage) molecule shape is formed, which serves as

an initial point for further stages of protein folding. In the

example shown in Fig. 1, the choice of one native final

structure out of ∼2100 possible structures, is reduced to

three stages. At each of these stages, one structure is

selected out of “only” ∼2100/3 possible structures, i.e. in

the case of the stepwise mechanism selection of the final

structure occurs ∼2100/(3 × 2100/3) ~ 1020 (!)-fold faster

than in case of the brute force search.

It should be noted, however, that this huge accelera-

tion is reached due to irreversibility of choice of the opti-

mal intermediate at each stage, and, therefore, a strong

(by many kBT, where kB is the Boltzmann constant, and T

is temperature) decrease in free energy at each stage. That

is why rapid protein folding suggested by Ptitsyn can

occur only if the native state of a protein is incomparably

(by many-many kBT) more stable than its unfolded state.

At the same time, such “necessary superstability” of the

protein’s native structure fundamentally contradicts the

thermodynamics of phase transitions in protein mole-

cules resolved by Privalov [22].

From personal memories. I remember very well heat-

ed debates between Ptitsyn and Privalov about the exis-

tence of protein folding intermediates and their thermo-

dynamic and kinetic roles. Now, years later, it is clear that

the folding intermediates discovered by Ptitsyn with the

tip of his pen in 1973 and denied by Privalov exist in real-

ity. They have been observed in many proteins both in

kinetic and thermodynamic experiments [31, 32].

However, Ptitsyn’s main hypothesis about the necessity of

existence of stable intermediates for protein folding was

not confirmed. In many small proteins, stable folding

intermediates are not observed at all [33], whereas in large

proteins they are typically observed when the native state

is much more stable than the denatured state, i.e. far from

the point of thermodynamic equilibrium of these two

states (under which protein folding also occurs, though

significantly slower) [33-35]. Therefore, the two debaters

were absolutely right about one point and wrong about

another …

Closer to the end of this review I will consider

Ptitsyn’s model in more detail, and we will see that based

on this model, but with somewhat different interpreta-

tion, we can understand the reason for the rapidity of pro-

tein folding.

Finalizing discussion of the proposed approaches to

solution of the protein folding issue, it should be men-

tioned that starting in the 1990s “folding funnels” became

popular models for illustration and explanation of rapidi-

ty of protein folding [36-39]. However, they did not allow

estimating – even approximately – time periods required

for spontaneous folding of proteins. According to experi-

ment (see below), for single-domain globular proteins

these periods range from microseconds to hours.

Generally, complexity of the protein folding prob-

lem, considering a virtually infinite number of their pos-

sible structures, consists of the fact that it cannot be

solved purely experimentally. Indeed, let us suppose that

a protein chain possesses another “nonnative” kinetically

very slowly reachable, but even more stable fold. How to

find it, if the protein cannot find it itself? Should we wait

for the result during 1010 (or even 10180) years?

On the other hand, the question of whether kinetics

or thermodynamics determines protein folding always

rises in solving various applied tasks. It rises during

sequence-based prediction of a protein structure (one

must know what to predict: the most stable structure or

the most rapidly folding one). It rises also in the case of

designing new, not present in nature, proteins (one must

know what to do: to maximally increase stability of desir-

able structure or to pave the fastest pathway to it).

However, is there indeed a contradiction between

“stable” structure and the “fast folding” one? Maybe a

stable structure is automatically the aim of “fast” path-

ways and thus automatically features fast folding?

Before addressing these questions, i.e. before consid-

ering the kinetic aspects of protein folding, let us remem-

ber several already well-studied fundamental facts from

the field of thermodynamics (herein we always discuss rel-

atively small single-domain proteins, 50-200 a.a. in

Fig. 1. Ptitsyn’s stepwise model [30]. Secondary structures are

shown – α-helices (cylinders), and β-regions (arrows). Both pre-

dicted intermediates were further found experimentally and

referred to as: first – “pre-molten globule”, second – “molten

globule” [31].
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length). These facts will facilitate our understanding of

what folding process conditions we should consider. The

thermodynamics facts are as follows.

1. The denatured form of proteins, at least of small

proteins, unfolded with a strong and concentrated dena-

turing agent is often a coil [40].

2. Protein unfolding is reversible [18]. Furthermore,

there may be equilibrium between denatured and native

states [41], and transition between these states is an “all-

or-none” process [22]. The latter means that at the pro-

tein denaturation point only two forms of the protein

molecule are present at appreciable amounts: “native”

and “denatured” ones, whereas all others (“semi-folded”

and “misfolded” forms) are virtually absent. Such a tran-

sition is only possible for chains whose amino acid

sequence provides sufficient “energy gap” between the

majority of structures and the most stable of them [22, 42-

45]; this provides reliability of protein functioning based

on the “all-or-none” principle: as in a light bulb, it is

either fully functional or completely not.

3. Under normal physiological conditions, the native

form of a protein is only marginally (by several kcal/mol

[22]) more stable than its denatured form (of course in a

transition midpoint both these forms have the same sta-

bility); hence, the native form of a protein is stable due to

its low energy, whereas the unfolded one is stable due to

its high conformational entropy, i.e. due to vast number of

various unfolded conformations.

Necessary clarification: as accepted in the literature,

the term “energy” implies here, strictly speaking, all free

energy of interactions including chain-solvent interactions

(for instance, “energy” of hydrophobic interactions is

determined by solvent entropy [40]). The term “entropy”

comprises here only the chain conformational entropy,

but not the solvent entropy. Such terminology is adopted

to leave the solvent out and to focus on the main prob-

lem – how the protein chain finds “its” spatial structure

among the vast number of possible ones.

The above-mentioned “all-or-none” transition

means that the native (N) and the unfolded (U) states are

separated with a high free-energy barrier.

It is height of this barrier that limits the rate of the

transition, and this height should be estimated to solve

Levinthal’s paradox.

For the beginning, however, it is appropriate to

determine whether “Levinthal’s paradox” is indeed a par-

adox? Already Bryngelson and Wolynes [46] noted that

this “paradox” is based on an absolutely flat (and there-

fore nonrealistic) “golf course” model for describing a

protein’s potential energy surface (Fig. 2a).

Somewhat later, Leopold et al. [36], following ideas

of Go and Abe [47], considered a more realistic energy

surface model (with inclination toward native protein

structure) and introduced “folding funnels” (Fig. 2b),

which seemed to eliminate “Levinthal’s paradox”.

However, not everything is so simple…

The problem of the huge time required for a search

for the most stable structure does exist: it was proved

mathematically that despite funnels, etc., a search for

such structure is a so-called “NP-hard problem” [48, 49],

which roughly speaking requires a huge (exponentially-

large) time for its solution (by both a folding chain and a

human).

Anyway, various “funnel” models became a popular

way to explain and depict protein folding [37, 50, 51]. The

lowest energy structure (which is formed by the most

powerful chain interactions) situated at the middle of the

funnel is surrounded by higher energy structures, which

Fig. 2. Main models of energy landscapes of protein chain: Levinthal’s “golf course” (a) and the “funnel” of Leopold et al. (b); both possess

the lowest energy (“native”) structure in the middle. c) More realistic picture of a bumpy energy landscape of the protein chain. Broad (of

many kBTmelt, where kB is the Boltzmann’s constant, Tmelt is a protein melting temperature) energy gap between the global energy minimum

and other energy minima is required for providing the “all-or-none” transition upon destruction of stable protein structure [22, 42, 43]. Only

two coordinates (q1 and q2) can be depicted on the figure, whereas the chain conformation is determined by hundreds of coordinates.

a b c
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only comprise some of these interactions. An “energy

funnel” directs the shift toward the lowest energy struc-

ture, which apparently should help the protein to avoid

“Levinthal’s brute force search”.

Nevertheless, it is possible to demonstrate that ener-

gy funnels as such do not resolve Levinthal’s paradox.

Analysis [52] of strictly formulated funnel models [39, 53]

shows that at the equilibrium between folded and unfold-

ed chain forms, these models are unable to explain simul-

taneously both main features observed during protein

folding: (i) non-astronomical folding time, and (ii) “all-

or-none” transition, i.e. coexistence of native and

unfolded forms of protein molecules during folding.

Besides, as mentioned above, the stepwise mecha-

nism of protein folding [30] as such is also unable to [54]

explain simultaneously both these main features observed

during protein folding.

Hence, neither the stepwise mechanism nor “fun-

nels” can resolve Levinthal’s problem, though they sug-

gest what may accelerate protein folding.

A fundamental solution of the paradox is provided by

a special funnel type, considering separation of unfolded

and native phases in a folding chain [55, 56] (see also

review [57]).

The next part of our review is devoted to this solu-

tion.

PHYSICAL THEORIES AND THEIR RESULTS

Physical estimation of free-energy barrier height sep-

arating native and unfolded chain states: A view of the bar-

rier from the native-state side. To resolve “Levinthal’s

paradox” and to demonstrate that the most stable protein

chain structure may (or may not?) be found during a rea-

sonable time, we may to a first approximation consider

only rate of “all-or-none” transition from the coil to the

most stable chain structure. At the same time, it is suffi-

cient to consider the case when the most stable chain fold

is as stable as the coil (or only marginally more stable than

it), whereas all other forms of a protein chain are thermo-

dynamically unstable. Here, observing the protein folding

is the easiest, as there are no stable folding intermediates:

they only appear when the native structure becomes much

more stable than coil; then the fastest protein folding

occurs [33], but analyzing it becomes more difficult.

Therefore, we will first focus on the point of equilibrium

between the native structure and the coil, where protein

folding is not the fastest, but the simplest.

From personal memories. I remember well that during

discussing the protein folding problem in 1970s, 80s and

even 90s, almost all of us one way or another were focused

on the environmental conditions in which the process

proceeded at the fastest rate (it was accepted that this

would emulate “physiological” intracellular conditions);

see for instance [30, 31, 33, 58]. Such attention to the

“physiological” conditions was reasonable from the bio-

logical point of view. However, the main physical ques-

tion – how the protein manages to find its structure dur-

ing a non-astronomical time period – was shaded by a

number of secondary (as much as I understand now) for

answering this question details; for instance a question

about the destiny of metastable folding intermediates

(which simply does not exist when protein folding is

examined near the point of thermodynamic equilibrium

between the native structure and the coil), and all atten-

tion must be focused on the transition state [33]. I may

not leave unnoted the fact that intense attention to this

equilibrium point differentiates the approach, which we

develop now, from those that were prevailing from the

1960s to the 1990s.

As an “all-or-none” transition requires a broad ener-

gy gap between the most stable structure and others [22,

42-45] (Fig. 2c), we will assume that an amino acid

sequence under study provides such a gap. Our aim is to

estimate rapidity of the “all-or-none” transition and to

prove (if possible) that the most stable structure of a pro-

tein or a normal size domain (∼100 a.a. in size) may

emerge within several seconds or minutes.

To prove that the most stable structure should fold

rapidly, it is sufficient to demonstrate that this structure

can always be formed through at least one “fast” folding

pathway. Existence of many reaction pathways would only

accelerate the process…

At the same time, we may avoid considering path-

ways leading to formation of non-native structures (there-

fore, in the presence of the “gap” – high energy ones)!

They cannot “destroy the true pass” for our chain.

Indeed, near the “all-or-none” mid-transition between

the most stable structure and the coil, no “semi-folded”

or “misfolded” states can serve as traps – they cannot

“absorb” folding chains just because their total stability is

small. A good analogy here would be water leakage

through cracks in a wall separating two swimming pools:

if “capacitance” of the cracks is small, i.e. they cannot

absorb all the water, any new crack may only accelerate

filling of the second pool. Thus, examining leakage

through a single crack, we estimate a minimal filling rate.

To provide fast folding, any step of the pathway

should be fast, the number of steps should not be large,

and – the main thing! – the folding pathway must not

contain very high energy “barriers” at any stage.

As interval of time required for fixation of one link is

small (nanoseconds, judging by measured growth rate of

α-helices in polypeptide chains [59]), a protein fixing its

links one-by-one would fold instantly (100-link chain in

less than ∼1000 ns) in the case when it would not have to

overcome a free-energy barrier. Protein folding takes sev-

eral seconds or minutes rather than microseconds

because of the free-energy barrier: most of the time span
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is spent for ascending to this barrier and falling back, but

not for movement along the folding pathway.

The “transition state” (i.e. the least stable “barrier

state” in the reaction pathway) plays a key role in this

process. According to a classical transition-state theory

[60-62], time of the process of crossing the barrier is cal-

culated as: 

TIME ∼ τ × exp(+∆F #/kBT),                  (1)

where τ is the characteristic time of a single step of the

process (normally about a nanosecond), ∆F # is the height

of the free-energy barrier.

As to ∆F #, the main question to be answered is

whether the ∆F # barrier in the pathway leading to the

most stable state of a protein chain is high.

Folding of a protein chain leads to decrease in both

its entropy (because its ordering grows) and energy (due

to formation of contacts between approaching chain

links). Energy decrease reduces whereas entropy decrease

elevates the chain free energy.

If during folding the chain must closely approach its

final structure before emergence of the contacts, which

should stabilize this structure (i.e. the chain must loose

almost all its energy before it starts gaining energy), the

increase in the free energy at the first folding stage will be

proportional to the number of links in the chain, i.e. it

will be very high, and the chain folding will be very slow.

This is exactly the idea (losing all entropy before gaining

energy) underlying Levinthal’s paradox, which claims

that a protein chain cannot find its most stable structure

even during the lifespan of the universe.

On the contrary, if during folding, reduction of

entropy is immediately compensated by reduction of

energy [47], then this pathway is not blocked by a high

free-energy barrier, and folding passes quite fast. Exactly

this picture exists, as I will show.

Let us consider change of energy ∆E, entropy ∆S,

and resulting free energy ∆F = ∆E – T∆S during sequen-

tial protein folding (or as they say, folding according to a

nucleation [26] mechanism) depicted in Fig. 3. At every

step of this pathway, one link is extracted from the coil

and adopts the position corresponding to the final (the

most stable) structure of the globule.

Such a process may seem somewhat artificial (how

can a link know its position in a final structure?).

However, this impression disappears when one notes that

this way we just watch “the movie” of decomposition of

the stable structure of the protein backwards and re-

members that, in accordance with the well-known in

physics principle of detailed balance [63], direct and

reverse reactions pass through the same pathway and fea-

ture the same rate when both states possess equal stabili-

ties.

Therefore, one may utilize the principle of detailed

balance to find the folding transit state by finding the

optimal unfolding transit state. Analysis of an unfolding

pathway as advantageous as it is much simpler: for any

globular structure, one can easily find a pathway for

sequential unfolding passing through the least unstable,

i.e. characterized by the minimal interface between glob-

ular and “unfolded” phases, compact semi-unfolded

states (Fig. 3) [55, 56, 64-66].

From personal memories:

1) As much as I remember, protein unfolding, in

contrast to folding, was never considered to be “paradox-

ical”, though it was for a long time well known that the

native state can occur in a kinetic equilibrium with the

unfolded one. In my opinion, no one ever asks a question

in addition to Levinthal’s paradox – how, again, a protein

can during “non-astronomical” time period obtain such a

great amount of energy required for its unfolding… The

absence of such question demonstrates how much easier

Fig. 3. One possible pathway of sequential protein folding with separation of unfolded and globular phases [56]. The free energy of folding

intermediates is increased due to their phase interface. Symbol # indicates maximally unstable (transition) state. The dotted area corresponds

to the protein part that already acquired its final conformation; the protein main chain is indicated by a solid line, whereas the side chains are

omitted to simplify the figure. The dashed line indicates still unfolded chain. The globular moiety of “semi-folded” structures lying at the

“optimal” (passing through intermediates with low free energy) pathway should be compact, i.e. possessing the minimal interface between the

folded and the unfolded phases.
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it is to imagine unfolding of any protein structure rather

than its folding…

2) We first faced the phase-separation problem when

searched for reasons of the “all-or-none” phase transition

upon protein melting [67]. However, at that time we have

not guessed to study the influence of this effect not only

on the phase character, but also on kinetics of this transi-

tion – otherwise Levinthal’s paradox should have been

resolved 15 years earlier.

Considering the pathway of sequential folding

(reconstructed from the sequential unfolding pathway),

we see that, along with growth of the final globule, inter-

actions stabilizing the final structure are restored in it

one-by-one.

If a growing structure always stays rather compact, as

it is in Figs. 3 and 4a (optimal pathways of exactly this

type should be of interest for us), then the number of

these interactions will grow (whereas their energy will

decrease) almost proportionally to n fixed links in a glob-

ule (Fig. 4c).

In reality, at the beginning of folding decrease in

energy is somewhat slowed as attachment of a link to a

surface of a small globule provides generally smaller num-

ber of contacts than attachment to a surface of a large

one. As a result, a nonlinear (i.e. proportional to ∼n2/3)

surface term emerges in energy ∆E for a growing globule.

For this reason, maximum deviation from linear energy

decrease is ∼L2/3 (where L is a number of links in a chain)

in the pathway passing through compact intermediates

(Fig. 4a) [55, 56, 65] (and more if intermediates are not

compact; Fig. 4b). This deviation is apparently small

compared to full energy decrease upon the chain folding,

whose value is proportional to L.

Along with growth of a globule, entropy of a chain is

also decreased approximately proportionally to number

of links incorporated into the globule (Fig. 4d). Though,

in the beginning of the folding entropy may drop some-

what faster due to formation of closed loops protruding

from a growing globule (Figs. 3, 4a, and 4b).

Consequently, a nonlinear (surface) term emerges in

entropy ∆S of this growing globule, which is (similarly to

that in ∆E) about L2/3 [55, 56]. More precisely,

∼L2/3ln(L1/3), as an unfolded loop protruding from the

surface of a semi-folded globule is ∼L1/3 long and the

entropy of the loop of this size is ∼ln(L1/3) [68, 69], while

ln(L1/3) ∼ 1 if L ∼ 100; for more precise estimation see

below, after Eq. (3). This decrease (see [55, 56] and more

Fig. 4. Sequential folding/unfolding with compact (a) and noncompact (b) intermediates, and changes in energy (c), entropy (d), and free

energy (e) along these pathways near the thermodynamic equilibrium between the coil (n = 0) and the final structure (n = L: all L links are

packed in a globule). Full change of energy, ∆E(L), and entropy, ∆S(L), are approximately proportional to L. Bold lines in panels (c) and (d)

indicate linear (proportional to n already packed links) portions of ∆E(n) and ∆S(n). Nonlinear portions of ∆E(n) and ∆S(n) are determined

mainly by the surface of the globular moiety of the molecule (solid lines – for pathway with compact intermediates; dashed lines – for path-

way with noncompact ones). Maximal ∆E(n) and ∆S(n) deviations from linear dependences are proportional to L2/3. As a result, ∆F(n) =

∆E(n) – T∆S(n) also deviates from linear dependence (bold straight line) by ∼L2/3 in the case of compact intermediates (and more than that

in the case of noncompact ones). Thus, at the equilibrium point (where ∆F(n = 0) = ∆F(L)), maximum excess (“barrier”) ∆F # in the path-

way with compact intermediates is also proportional to just L2/3. Change in ∆F(n) in the pathway toward other structures looks approximate-

ly the same (see inset in panel (e)), but these pathways can be neglected as all these structures are unstable, i.e., have ∆F(n = 0) < ∆F(L) in the

presence of the energy gap between the most stable and other globules and “all-or-none” transition between the unfolded and the most stable

globular state. Taken from [56].

a b

c d e
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recent purely mathematic works [70, 71]) is significantly

lower than the decrease in entropy as such, which is (sim-

ilarly to the energy decrease) proportional to L.

Both linear and surface terms of ∆S and ∆E are

included in the free energy ∆F = ∆E – T∆S of a growing

(or unfolding) globule. When the accomplished globule is

at equilibrium with the coil, the larger linear terms mutu-

ally annihilate in the difference ∆E – T∆S (as ∆F(n =

0) = ∆F(L)), and only surface terms remain: without

them, ∆F(n) should be equal to zero for the whole path-

way.

Therefore, the free-energy barrier (see Fig. 4e) in the

pathway of sequential folding with compact intermediates

is only determined by relatively small effects related to the

surface of the globular intermediates, and its height is

proportional not to L (as it is suggested Levinthal’s esti-

mation), but only to L2/3.

In a simplified form (see detailed calculations in [55,

56, 65, 72]), the free energy of the barrier is estimated as

follows.

The fastest folding pathway is the one featuring the

lowest free-energy barrier. In any given pathway, the bar-

rier corresponds to an intermediate with the highest free

energy, i.e. to the one having maximal in this pathway

interface of folded and unfolded phases. In the case of

compact intermediates, such an interface contains about

L2/3 residues. The energy term ∆E# of the free energy of

the barrier emerges due to interactions lost by the residues

situated at the interface; it is approximately equal to:

L2/3·1/4·ε,                            (2)

where ε ≈ 1.3 kcal/mol ≈ 2kBTmelt is a mean melting heat

of an amino acid residue in a protein [22] (this is the first

empirical parameter utilized in the theory), and ≈1/4 is

the portion of interactions lost by the residue at the inter-

face on average. Thus,

∆E #/kBTmelt ≈ 0.5 L2/3.                   (2a)

The entropic term ∆S # of the free energy of the bar-

rier is related to loss of entropy by closed loops protrud-

ing from the globular phase to the unfolded phase (see

Figs. 3, 4a, and 4b).

The upper limit for ∆S # is zero (if there are no such

loops at the interface).

The lower limit for ∆S # is about

(∆S #)lower = 1/6·L2/3·[–5/2·kB·ln(3·L1/3)],       (3)

where 1/6·L2/3 as a maximum number of closed loops at

the optimal (with lowest number of loops) globule/coil

interface. In reality, this is a mean value for one cross-sec-

tion of a globule (Figs. 3 and 4a), as the residue at the

interface may have six directions (four along with the sur-

face, one – inward, and just one – outward), while an

interface utilized in folding must be covered by minimal,

i.e. not more than this mean, number of loops. 3·L1/3 ≡

(L/2)/(1/6·L2/3) is the mean number of residues in such a

loop (it is equal to number of unfolded residues divided by

number of loops), and –5/2·kB·ln(3·L1/3) is the entropy

lost by such closed loop (whose inner parts do not pene-

trate inside the globule, which changes conventional

Flory coefficient from 3/2 to 5/2 [55, 56]). If L ∼ 100 (this

approximation is apparently adequate for the entire range

of L = 10-1000),

(∆S #)lower ≈ –kB·L2/3. (3a)

As a result, time of both formation and unfolding of

the most stable structure growth along with number of

residues in a chain L not “according to Levinthal” (i.e.

not as 2L or 10L or any number raised to the power of L),

but, at the middle of the transition, as:

TIME ∼ τ × exp[(1 ± 0.5)L2/3],                (4)

where τ ≈ 10 ns [59] (this is the second and the last empir-

ical parameter utilized in the theory).

Time estimated in this way depends on both size and

shape (which determines by means of ∆S # factor 1 ± 0.5;

see above) of the protein’s native structure.

The physical reasons for this “non-Levinthal” esti-

mate are as follows: (i) decrease in entropy upon folding is

almost immediately and almost completely compensated

by energy decrease during sequential folding (and similar-

ly energy increase is almost immediately and almost com-

pletely compensated by the increase in entropy during the

same sequential unfolding pathway); (ii) the free energy of

the barrier emerges because of increase in free energy

related only to surface effects, which are relatively weak.

The observed time periods required for protein fold-

ing (Fig. 5) cover about 11 orders of magnitude (this is

comparable with a difference between the lifespan of a

mosquito and the age of the Universe).

At the middle of the transition (at ∆F = 0), these

time periods are indeed (Fig. 5) within the theoretically

outlined limits {10 ns × exp(0.5L2/3) – 10 ns ×

exp(1.5L2/3)}. Under more “physiological” conditions

(“in water”, where ∆F < 0), L2/3 is changed to L2/3 +

0.4∆F/kBT [65] (see discussion), but in all other respects

the range stays the same.

The formula obtained (4) and Fig. 5 demonstrate

that a chain of L <~ 80-90 residues should always find its

most stable structure during minutes even under “nonbi-

ological” conditions at the middle of the transition,

where, as it is known [33, 41], folding proceeds at the

lowest rate. This means that structures of such small pro-

teins are under thermodynamic control: they are the most

stable among all structures of such chains. The native

structures of larger proteins (of 90-400 residues) are

under additional “structural” control in the sense that the
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most “tangled” folds of such long chains may not be

reached during days or weeks even if they are thermody-

namically stable; indeed, highly “tangled” folds are never

observed in long protein chains [65] – they are apparent-

ly excluded from the diversity of protein structures. It also

explains why large proteins should be either nonspherical,

or consist of several domains: otherwise chains over 400

residues long would fold inappropriately slowly to func-

tion in a cell. This is the “structural” control, whose

action is similar to that of Levinthal’s “kinetic control”,

though at another level and only for large proteins. The

estimates above (80-90 and ≈400 residues) will somewhat

increase if free energy ∆F of the native structure is lower

than that of the unfolded chain (see below), but remain

essentially the same [65].

One more thing to mention. “Quasi-Levinthal”

brute force search for correct knot formation (Fig. 6) may

actually limit folding rate, as a knot cannot be changed

without decomposition of a globular portion. However,

computer simulations demonstrate that one knot includes

about 100 residues (see references in [72]); thus, the

search for a correct knotting can limit only very large

chains [72], which anyway cannot be folded within a rea-

sonable interval of time (according to Eq. (4)).

Estimating dependence of extent of search in confor-

mational space for native protein structure on its size: A

view of the barrier from the unfolded state side. The above

estimate for the protein folding time is actually based on

analysis its unfolding, and not folding, because for any

Fig. 5. Experimentally measured in vitro protein folding rate constants in water (under approximately “biological” conditions) and at the mid-

dle of the transition (in the presence of small quantities of a denaturing agent) for 107 singe-domain globular proteins (or isolated domains)

without S–S bonds and covalently attached ligands (though, S–S bonds do not significantly affect rate of protein folding [73]). Triangle: phys-

ically allowed area; light gray (with a darker band) corresponds to biologically reasonable folding time (≤10 min); larger time periods (i.e. lower

rates) required for folding are observed (for some proteins) only at the middle of the transition, i.e. under nonbiological conditions. Light

dashed line limits area of rates for oblate (1 : 2) and oblong (2 : 1) globules at the middle of the transition; darker dashed line – under “bio-

logically-relevant” conditions. L is number of amino acid residues in the protein chain; ∆F ≤ 0 is difference of free energy between the native

and the unfolded states of a chain. Taken from [65].

Fig. 6. a) A compact folding intermediate with protruding unfold-

ed loops. Growth of the intermediate corresponds to a shift of bor-

der between fixed (globular) and unfolded (coil) portions of the

protein chain. Successful folding of the intermediate requires prop-

er formation of knots in its chain: semi-folded structure with wrong

knotting (b) is unable to grow to properly folded protein, it should

first unfold. However, a ∼100-link-long chain can only contain one

or two knots, so the search among intermediates with different loop

knotting should not limit the protein folding rate [72].

a b
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structure it is easier to define a good unfolding pathway

(and to estimate time required for that, see above) than a

good pathway leading to folding of a structure with the

least energy, whereas the free-energy barrier is the same

for both pathways.

In other words, we considered free-energy barrier

between folded and unfolded states (Fig. 4e), focusing on

the side corresponding to energy increase along the way

from the volcano conduit to the crater edge (Fig. 7; com-

pare with Fig. 4e), and we did not yet consider the barri-

er side, which is associated with loss of entropy along the

way from unfolded state to the crater edge.

As rates of direct and reverse reactions are equal at

the middle of a transition (as follows from the physical

principle of “detailed balance”), both sides of the barrier

are of the same height, and thus considering just one side

(“unfolding side”) is sufficient for estimating the barrier

height.

However, to complete the analysis, one must consid-

er the other side of the barrier – the one that is the most

interesting for biologists: it is associated with the folding

(i.e. with loss of entropy). Doing this we will observe the

protein-folding puzzle from a different angle.

To dissect folding, a search for a stable conformation

of the protein chain should be made.

The full conformational space for a chain estimated

by Levinthal [21] at the amino acid residue level is truly

huge: from 3100 to 100100 conformations for a chain of 100

residues.

However, should the chain try all these 100100 con-

formations in a search of the most stable of them? No,

conformational space is covered by local energy minima;

each of these is surrounded with a local energy funnel

providing rapid descending to this minimum (see Fig. 2b

and [75], and Fig. 6 in [76] in this issue of Biochemistry

(Moscow)). Thus, during a search for the global energy

minimum, the enormous Levinthal’s brute force search

Fig. 7. This purely illustrative figure demonstrates how entropy

converts an energy funnel (depicted in Fig. 2b) into a “volcano-

like”, as it is called now [74], landscape of free energy with free-

energy barriers (see Fig. 4e) in each pathway from unfolded state

to a globular state. Any pathway from unfolded state to a globular

one first ascends a barrier, i.e. the edge of the volcanic crater, and

only then begins descending to the “funnel”, i.e. into the crater.

Smooth free-energy landscape corresponds to compact semi-

folded intermediate structures (depicted in Fig. 4a), whereas

“rocks” (outlined with dashed lines) represent a landscape that

also includes noncompact semi-folded intermediates (shown in

Fig. 4b). A more correct though less elegant scheme of free-ener-

gy landscape is provided in Fig. 2 in the report [64].

Fig. 8. Scheme for estimating conformational space at the level of all possible folds of structural elements. Taken from Appendix to [82].

~L2/3

quasi-spherical architectures aligned architectures orthogonal architecture
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for mainly noncompact chain conformations can be sub-

stituted by a much smaller search for compact globular

structures corresponding to deep energy minima.

Therefore, to estimate the search space one must

estimate the number of deep local energy minima (as well

as time of transition from one minimum to another). In a

certain sense, it is similar to a search for possible

“topomers” of a protein chain [77, 78]. However, our goal

now is not to calculate the protein folding rate: we only

need to assess the lower limit of this rate, which is princi-

pally different from the search for topomers.

Browsing protein structures shows that interactions

in them are mainly associated with secondary structures

[79-81]. Thus, a question rises about how many energy

minima exist at the level of formation and assembly of

secondary structures into globule, i.e. at the level that was

considered by Ptitsyn [30] in his stepwise protein-folding

model.

This number appears to be lower by many orders of

magnitude than the number of conformations of amino

acid residues, i.e. 100L or 10L or 3L, and it reaches ∼LN for

an L-link chain having N elements of secondary structure

[82]. The value of N is much smaller than of L, which is

the reason for strong decrease in conformational space.

The order of LN was assessed as follows (Fig. 8).

Number of architectures (i.e. types of tight folds of

secondary structures) is small (see [79, 80, 83]) – typical-

ly, ∼10 or lower for a given set of secondary structures

(Fig. 8a), because architectures are folds of secondary

structure layers (each contains several structural ele-

ments), and therefore combinatorics of layers is very

small compared to that of much more numerous elements

of secondary structure (see below).

The maximal number of folds, i.e. all positional

combinations for N elements, in a given protein architec-

ture is N! ≡ N × (N – 1)×. . . ×2×1 (Fig. 8b).

The maximal number of topologies, i.e. all combina-

tions of directions of these elements, cannot exceed 2N

(Fig. 8c).

Transverse shifts and tilts of an element inside a tight

fold are prohibited (Fig. 8d).

Shifts and rotations of elements of a secondary struc-

ture within a dense fold are closely coupled (this is shown

in Fig. 8e for β-sheet, where such connection is the most

obvious, but it is also true for α-helices – let us remem-

ber Crick’s “knobs-into-holes” packing [84]). As a result,

each α or β element may have approximately L/N (i.e.

about the average length of an element) possible “shift-

rotations” in a globule formed by N structural elements in

an L-link chain.

All this limits number of energy minima in confor-

mational space to ∼10 × (L/N)N × 2N × N!; which (using

Stirling’s approximation N! ∼ (N/e)N) gives in the main

term at L >> N >> 1 [82]:

NUMBER of energy minima subject to searching ∼ LN.  (5)

This number can be further reduced by symmetry of

a globule; besides, α-helix cannot be placed into a β-sheet

regardless of regrouping other elements, and vice versa,

because β-strand requires a partner, another β-strand, to

form hydrogen bonds, whereas α-helix avoids such part-

nership. Moreover, short or crossing loops between struc-

tural elements may not allow adopting random positions

and directions within a globule, etc. [85]. However, this

reduction is not important for us, because our goal is to

assess upper limit of the number of configurations.

Here, a question arises: how does a chain know where

and what secondary structure should be formed? The

answer seems to be the following: the majority of second-

ary structures are determined by local amino acid

sequences [30, 86, 87]. Anyway, the choice “to be or not to

be” only adds just one state to the already considered

number L/N of its possible shift-rotations, whereas α ↔ β

transition just doubles it, which is not significant, see [88].

In a not too small compact globule, the length of a

secondary structure element should be proportional to

the diameter of the globule, i.e. ∼L1/3. More precisely:

globule volume ≈150 Å3 × L (and, therefore, its diameter

≈ 5 Å × L1/3), whereas a shift by one residue is 1.5 Å in α-

helix and ≈3 Å3 in an elongated chain [81]. Therefore, α-

helix contains ≈3L1/3 residues, while β-strand or loop

consists of ≈1.5L1/3 residues, i.e.

NUMBER of elements “secondary structure + loop” N ≈

≈ L2/3/4.5 — L2/3/3,                         (6)

while expected LN value (i.e. estimation of complete

search volume) is within limits:

∼L
L2/3/4.5

≡ exp([ln(L)/4.5] × L2/3]) — 

— ~L
L2/3/3

≡ exp([ln(L)/3] × L2/3]).             (7)

Analogous dependence of LN value on L comes [70,

71] from strictly mathematical analysis of the degree of

complexity of a search task.

As ln(L)/4.5 ≈ 1 and ln(L)/3 ≈ 1.5 at L ≈ 80-90, the

above limits are close to the upper limit determined by

Eq. (4).

On the other hand, L/N value (i.e. average number

of residues per secondary structure element with an

accompanying loop) is 15 ± 5 according protein statistics

[74]; this also leads to LN value that is very close to the

above estimate.

Adopting from experiments on folding of the small-

est proteins [89, 90] 1 µs as an estimate of the time

required for “viewing” one configuration, and taking

L/N = 15 ± 5 from protein statistics, we see that the time

theoretically required for screening the entire conforma-

tional space during formation and packing of a secondary

structure is approximately equal (Fig. 9) to the upper
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limit of experimental folding times observed for small

(L <~ 80-90 residue) proteins, whose structure selection is

determined by stability, as we already know.

The above does not mean that a protein chain must

check all its conformations at the level of formation and

packaging of secondary structures (though a chain of 80-

90 or fewer residues can do it within minutes, as shown for

some proteins in Fig. 9). It only means that the “energy

funnel” leading to the native structure starts working at the

level of secondary structures, and thus should accelerate

folding by only several orders of magnitude (as it is

demonstrated in Fig. 9 for the majority of the proteins),

but not by tens and hundreds of orders of magnitude,

which should happen in case it should have to start work-

ing at the level of amino acid residues (compare with the

topomer-sampling model by Debe et al. [77] and Makarov

and Plaxco [78]). Figure 9 shows that the acceleration is

especially notable for chains of >100 residues, but even in

this case the main work is done by secondary structures.

From the bird’s eye view, the estimates (4)-(7) of the

number of chain conformations subject to a search during

finding its most stable conformation appears as follows.

This number is determined, in the main term, by size of

the globule’s surface – by number of surface residues, or,

which is almost the same, by the number of secondary

structures N (both these parameters are proportional to

L2/3). The physical reason is that all independent degrees

of freedom in a dense globule are associated with its sur-

face, since a dense globule prohibits independent

regrouping of its residues [45, 92] – as well as a secondary

structure does. From this point of view, secondary struc-

tures that we used here are not required for the funda-

mental estimates (let us note that similar estimates by Fu

and Wanf [70] and Steinhofel et al. [71] and our previous

estimates [55, 56, 64, 65, 93] did not utilize secondary

structures), though these structures actually form the core

of a protein globule and they are useful for clarification of

the fundamental estimates obtained.

CONCLUSION

We have examined pathways of a folding protein

chain through the “volcano-like” free-energy landscape

depicted in Fig. 7 both from the volcano base to its crater

and from the throat to the crater edge. Therefore, we

studied both sides of the barrier separating folded and

unfolded states of chain by a crossing the barrier forward

and backward, and learned about two aspects of protein

folding/unfolding that solve Levinthal’s paradox.

The side of the barrier facing the native structure is

easier to analyze, because for any structure it is easier to

outline a reasonable unfolding pathway than a folding

pathway to a structure still unknown to the chain.

Fig. 9. Rate of search and rate of folding. Folding rates (circles and rectangles) are shown for proteins experimentally studied in vitro at the

middle of their transition (i.e. at equal stabilities of their native and unfolded states); large light triangle – predicted (from analysis of unfold-

ing!) range of these rates (compare with Fig. 5). Mesh shading – theoretical estimate of minimal rate of full search, during folding, for all pos-

sible packings of secondary structures (α-helices and β-strands). Limit of “Levinthal search rate” (1012 s–1/3L at only three possible residue

states: α, β, and coil) is shown with double-dashed line, whereas rates of such searches at 10 or 100 states of a residue are significantly lower

(in the dark-gray zone on the left). The figure is taken from [91].
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Analysis of unfolding, i.e. the view from inside the folding

funnel, allowed estimating the range of unfolding time

periods; and further, the detailed balance principle

revealed the range of folding (or, more precisely, search-

ing) time periods. At the same time, analysis of the fold-

ing itself only revealed the upper limit of this range.

Let us note that the same scheme may be applied for

formation of the native structure of a protein starting not

only from a coil (which we used here for simplicity), but

also from a molten globule or another state. But, for these

processes (where, nevertheless, experiment does not

demonstrate significant folding acceleration, see Figs. 5

and 9) all estimates were much more difficult because

analyzing the denatured but not completely unfolded

state is difficult. That is why we will not go beyond the

simple case – formation of native structure from a coil.

We should notice that “Levinthal’s problem” also

exists for crystallization (it is similar to protein folding –

in this case different atoms also must choose one of

numerous configurations in a “so far unknown” to them

crystal); however, to our knowledge, it did not attract

much attention there as compared to the case of proteins

[94, 95].

Several concluding remarks:

1. Our estimate of the number of secondary structure

ensembles subject to search (i.e. number of correspon-

ding energy minima for a protein chain) does not depend

on stability of these ensembles (Eqs. (5)-(7)). The effect

of stability (∆F) of the native state on folding time is con-

sidered below.

2. So far, our estimate (4) of the folding time was

associated with the point of equilibrium between the

unfolded and the native states, where ∆F = 0, whereas

observed folding time is maximal, but it may exceed by

orders of magnitude folding time under native conditions

[33].

A question is appropriate: how does folding time

change when the native state becomes more stable than

the coil (i.e. at ∆F < 0)? Both experimental [33] and the-

oretical analysis [56] indicate that at small (but still, about

several kBT, so that stable intermediates do not form)

–∆F value, the folding time is reduced along with grow-

ing stability, and, in theory [65], it may be estimated as:

TIME ∼ τ × exp[(1 ± 0.5) × (L2/3 + 0.4 × ∆F/kBT)], (8)

where 0.4 factor corresponds to theoretical estimate of

the chain portion involved in the folding core. Thus, 0.4 ×

∆F is an estimate of change of free energy of the core.

This equation allows assessing rates of folding that occur

under different conditions (Fig. 5).

For the case of very high stability of the native state

(–∆F >> kBT), Thirumalai [96] proposed the rule

ln(TIME) ∼ L1/2, which differs from Eq. (4), but is similar

to it. In this case, fast protein folding passes “downhill”

(energy-wise), but the “energy slope” has (because of

protein heterogeneity) bumps with energy proportional to

L1/2. However, numerical experiments on protein lattice

models have demonstrated [35, 58] that for the tempera-

ture providing the fastest folding, its time grows along

with chain length as ln(TIME) ∼ A × ln(L). Coefficient A

there is equal to six for “random” chains and four for

chains “edited” for the fastest folding and possessing large

energy gap between the most stable fold and others. This

again demonstrates dependence of folding rate on exper-

imental conditions and size of energy gap [44, 57].

3. Some proteins are “metamorphic” [97]: they are

observed in two different structures. We are most interest-

ed in a very few of them (for instance, serpin), which first

acquire “native” structure functioning in a cell or in a

tube for about an hour, and then convert to another, non-

working but more stable structure [98]. What is important

is that this transition is not associated with a change in the

protein’s environment (i.e. aggregation, as in the case of

amyloids, or formation of any complexes). Therefore, a

chain of such protein possesses two stable structures: first

one folds faster, another one is more stable. Apparently,

such proteins should be very rare: theoretical estimates

[35, 81] suggest that an amino acid sequence encoding

one stable structure (whose energy is separated by large

energy gap from energy of others) is a rarity as such,

whereas a sequence encoding two stable structures is a

rarity squared…

4. Equations (4) and (8) assess the range of possible

folding rates rather than folding rates for individual pro-

teins, which can differ (Fig. 5) by several orders of mag-

nitude even for proteins of the same size. The effect of

folding pattern of a certain protein chain on folding time

may be assessed using a phenomenological “contact

order” parameter (CO%) [99]. CO% is equal to mean

distance (by sequence) between residues contacting in a

native protein divided by chain length (see also [51, 100]).

Large CO% indicates presence of numerous closed loops

in a native globule, whereas high value of coefficient (1 ±

0.5) in Eqs. (4) and (8) indicates their presence on the

surface of a semi-folded globule (Fig. 6). Therefore CO%

is more or less proportional to the factor (1 ± 0.5) [101].

CO% as such is useful for comparing folding rates of pro-

teins of the same size, but it does not fit for comparing

folding rates of small and large proteins, since CO% is

reduced approximately proportionally to L–1/3 along with

growth of chain length L [65, 101, 102] (which reflects a

low “entanglement” of chains of large proteins), whereas

folding rate is reduced (while its TIME grows) with

increasing proteins size (Fig. 5).

Therefore, parameter AbsCO = CO% × L, which

increases with growth of chain length L as L2/3 [101] and

combines the effect of protein chain folding pattern [99,

102] with the main effect associated with the protein size,

predicts well protein-folding rate.

5. In this review I allowed myself to omit numerous

attempts to “bioinformatically” predict the rate of pro-
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tein folding as, according to “blind” testing [103], they

led to unsatisfactory results.

6. Returning to Levinthal’s paradox, one can con-

clude that it is resolved for protein chains under 100 a.a.

in length (provided that their sequences allow significant

stability for the only fold). This is because (i) these rela-

tively short chains are able to cross the free-energy barri-

er in their pathway to their most stable folds regardless of

their complexity (Fig. 5), and (ii) they are able to screen

all their folds at the level of formation and assembly of

ensembles of secondary structures (Fig. 9) and to find the

most stable of them.

As to larger chains, they can screen only relatively

simple (not much “entangled”) folds. Therefore, whether

some other (very “entangled”) fold may be more stable

than the native one is still an open question. This is actu-

ally observed for some “special” proteins similar to ser-

pin, which consists of 400 a.a.
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