
The story of amyloid studies started in 1639 when

Nicolaus Fontanus described a strongly increased human

spleen containing large white inclusions, which seemed

to be amyloid deposits [1]. After 150 years, in 1789,

Antoine Portal for the first time described liver amyloido-

sis [2]. In 1854, Rudolf Virchow studied inclusions in a

“waxy” liver and found structures that were stained with

iodine similarly to starch grains in plants. These struc-

tures Virchow termed “amyloid” from the Latin “amy-

lum” or Greek “amylon” that means starch. However, in

1859 Carl Friedreich and August Kekule showed that

these inclusions did not have a carbohydrate component

but contained proteins. These data became a basis for

studies on amyloids as protein derivatives [3, 4].

It is generally thought that amyloids are protein

aggregates with a cross-β-structure capable of binding

with the dyes Thioflavin T and Congo Red, possessing

apple-green birefringence in polarized light, and resistant

to action of solvents and proteases [5-8]. By now, more

than thirty proteins/peptides are known that form amy-

loids found in humans in various diseases [8, 9]. Amyloids

have been shown to play a central role in the pathogene-

sis of Alzheimer’s and Parkinson’s diseases, type II dia-

betes, prion diseases, and systemic amyloidoses [6, 10-

12]. Amyloid deposits have been found in the intima and

media of vessels under aorta amyloidosis and in striated

muscles in myocardites, myositis, and cardiomyopathies

[13-15]. In particular, in blood vessels amyloid aggregates

have been found formed by serum A protein and its frag-

ments, which are accumulated in the intima and media of

arterioles, under endothelium of venules [13]. In aorta

amyloidoses, amyloids of medin are found [14]. In the

cardiac muscle amyloids are found formed by such pro-

teins as transthyretin, light and heavy immunoglobulin

chains, serum amyloid-A, apolipoprotein, apolipoprotein

AIV, fibrinogen α-chain, and atrial natriuretic factor,

which contribute to development of “amyloid cardio-

myopathy” or “cardiac amyloidoses” [15, 16]. Amyloid

deposits containing Aβ-peptide are found in skeletal

muscle in myositis [8]. However, at present, the paradigm

of amyloids as negative formations for the cell, which

cause development only of pathologic processes in living

systems, is under revision. There are works that have

demonstrated that amyloids can also play a positive role

in the organism. Thus, in prokaryotes functional amy-

loids have been found of such proteins as curli in E. coli

[17], tafi in Salmonella spp. [18], and chaplins in

Streptomyces coelicolor [19]. Amyloids of these proteins

were shown to participate in cell adhesion and formation

of biological films, and chaplin amyloids are involved in

production of aerial hyphae and dissipation of spores

[20]. Functional amyloids are also found in eukaryotes:

on the surface of spores and fruiting bodies of some fungi

amyloid aggregates form dense hydrophobic monolayers

[21], in the silk moth Antheraea polyphemus amyloids
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have a protective function of the chorion (egg envelope)

[22]; amyloids of spidroin are components of spider silk

[23]. There are also known functional amyloid fibrils in

mammals that are formed in melanosomes from prote-

olytic fragments of protein Pmel17 [24].

Recent studies have shown that many proteins under

certain conditions can form amyloids in vitro. The con-

cept of an “amylome” appears, which denotes the uni-

verse of proteins that are capable of producing amyloid-

like aggregates/fibrils [25]. These proteins also include

muscle ones: myosin subfragment-1 [26], myosin-binding

proteins of the titin family (C-, X-, H-proteins) [27, 28],

and titin [29]. Can amyloid aggregation of titin and other

muscle proteins occur in vivo, and what role might these

aggregates play in the cell? These questions require further

investigations. Nevertheless, recent studies allow us to

state that on folding of unfolded, titin domains misfolded

conformations can be produced, which the authors have

named “intramolecular amyloid” [30].

This review presents data on structural and function-

al features of titin, the role of this protein in determina-

tion of mechanical properties of sarcomeres, specific fea-

tures of regulation of the stiffness and elasticity of its mol-

ecules, amyloid aggregation of this protein in vitro, and

possibilities of formation of intramolecular amyloid

structures in vivo. Molecular mechanisms are described of

titin protection against aggregation of its molecules in

muscle cells. Based on analysis of the data, it is supposed

that titin and the formed by it elastic filaments have fea-

tures of amyloid.

STRUCTURE−FUNCTIONAL FEATURES

OF TITIN AND ITS DOMAINS

Titin (connectin) is a protein with the highest molec-

ular weight among known proteins: the molecular weight

of titin isoforms reaches ∼3.0-3.7 MDa in striated and

∼2 MDa in smooth muscles [31, 32]. Titin has a multido-

main structure, and its gene can encode a protein with the

following structure: a protein kinase domain, 152 Ig-

domains, 132 FnIII-domains, 31 PEVK domains, 7 Z-

repeats, and 33 unidentified domains (based on the

UniProt database).

In sarcomeres of cardiac and skeletal muscles, the

amount of titin is third after the amounts of actin and

myosin. Titin molecules with the length of about 1 µm

and diameter of 3-4 nm [33-36] occupy a half of the sar-

comere from the M-line to the Z-disc and form the third

type of so-called elastic filaments [37]. In the sarcomere

A-zone, titin is bound with myosin (thick) filaments [38].

In the sarcomere I-band, some regions of the titin mole-

cule can interact with actin (thin) filaments [39-49].

However, the major part of the titin molecule can pass

easily in this zone connecting the ends of myosin fila-

ments with the Z-disc. It is supposed that for each myosin

filament, there are six titin molecules [50], with the N-

ends overlapped in the Z-line and the C-ends overlapped

in the sarcomere M-line [37]. It has been shown that the

structure of this giant polypeptide is different in various

regions of the sarcomere and contributes to their archi-

tecture and functioning. The major part (to 90%) of the

titin molecule consists of repeated immunoglobulin-like

(Ig) and fibronectin III-like (FnIII) domains with β-fold-

ed structure [37]. In addition to these domains, titin con-

tains unique sequences: the kinase domain near the sar-

comere M-line, N2A, N2B, and PEVK-elements in the

sarcomere I-band, as well as phosphorylated regions in

the sarcomere M-, I-, and Z-zones [37, 51-55]. Titin

localization in all sarcomere zones, its elastic features,

and interactions with many proteins promote the poly-

functionality of this protein. It has been shown that titin:

(i) is a carcass for assembly of myosin filaments and sar-

comere [56-60]; (ii) contributes to maintaining a highly

ordered sarcomere structure and, therefore, to the muscle

contractile function [61, 62]; (iii) participates in trigger-

ing and regulation of the actin–myosin interaction medi-

ated through the binding with proteins of thin filaments

[41, 63] and through changes in the ATPase activity of

myosin [36, 64, 65]. It is supposed that titin, in complex

with signaling proteins united by titin in the network, acts

as a sensor of stretching and tension, participating in

intracellular signalization, in particular, in the regulation

of expression of genes of muscle proteins and of protein

metabolism in the sarcomere [52, 54, 66-77].

As differentiated from the sarcomere A-zone where

titin is firmly bound to myosin filaments, in the I-zone

the elastic part of its molecule can develop a passive ten-

sion under stretching [78] and restoring force under sar-

comere contraction [79-82]. Biophysical studies have

shown that this part of the titin molecule behaves as a

“nonlinear entropy spring”, which straightens under the

influence of a force from 20 to 30 pN and demonstrates

elastic resistance under compression with the force of

2.5 pN [83]. Using atomic force microscopy or modeling

the molecular dynamics resulted in the higher values of

the force required for unfolding of individual titin

domains or of their tandem sequences (table).

The table shows that the Z1Z2-repeats of titin are the

most resistant to stretching. In the stretchable I-band, the

Ig domains of titin are unfolding in the range of forces of

∼150-330 pN [86, 88]. In the A-part of the titin molecule,

which is tightly bound to the myosin filament and does

not change its length under natural conditions, the FnIII

domains are unfolding at force from 100 to 200 pN [87,

89]. It should be noted that such values of the force

required for unfolding the amyloid structure were

obtained also for some amyloid fibrils: 115 pN for amy-

loids of the human prion protein (huPrP90-231) [90],

250 pN for amyloids of glucagon [91] (this value was

obtained using atomic force microscopy), 522 pN for

amyloids of Aβ-peptide [90] (the values were calculated
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using molecular dynamics simulations). Obviously, the

method of molecular dynamics simulations gives overes-

timated values of the force, and therefore, comparing

these values with others obtained using atomic force

microscopy is not correct. The analogy found between

titin and amyloids seems to be a consequence of a high

content in them of the β-folded structure, which can be

unfolded by nearly the same force. Thus, this parameter

cannot be used as a basis for comparing mechanical prop-

erties of amyloid aggregates and titin molecules. Such

comparisons should be based on specific structural fea-

tures of the protein that determine its mechanical features

or the protein itself and of its aggregates. In this connec-

tion, titin is interesting because its elasticity and resilien-

cy mediate mechanical features of sarcomeres, cells, and

the muscle as a whole.

ROLE OF TITIN IN MECHANICAL PROPERTIES

OF MUSCLE CELLS. REGULATION OF TITIN

MOLECULE STIFFNESS IN SARCOMERES.

FUNCTIONAL ROLE OF IDENTITY OF AMINO

ACID SEQUENCE OF TITIN DOMAINS

There is now no doubt that titin plays a role in medi-

ating the elasticity of muscle cells, in particular, car-

diomyocytes. The coexpression of N2B- and N2BA-iso-

forms of titin differing in the length of the stretchable I-

part and the change in their ratio under the influence of

external or internal factors (during ontogenesis, develop-

ment of pathological processes, hibernation, micrograv-

ity (for references see [92]) are considered as one of

molecular mechanisms of changes in the stiffness of car-

diomyocytes and cardiac muscle as a whole. The titin

N2BA-isoform (molecular weight ∼3300 kDa) has the

longer, more elastic and correspondingly less stiff I-part

of the molecule; the N2B-isoform (molecular weight

∼3000 kDa) of titin has the shorter, less elastic, and cor-

respondingly stiffer I-part (Fig. 1). The content of the

titin N2B-isoform is shown to directly correlate with an

increase in passive tension on stretching of cardiac mus-

cle myofibrils [93-96]. The regulation of cardiomyocyte

stiffness on the level of ratio of long and short titin iso-

forms can be easily followed in the ontogenesis of mam-

mals [96-98]. During the early postnatal period, the ratio

of titin isoforms changes along with an increase in the

pump function of the heart: the fraction of the shorter

(stiffer) isoforms of this protein increases [93, 96, 97]. In

adult animals, there is a correlation between heart rate

and the fraction of the short N2B-isoform of titin in the

left ventricle myocardium. In particular, in small animals

with heart rate of 140-650 beats/min (rabbit, hamster,
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mouse, rat), the content of the stiff N2B-titin isoform in

the left ventricle is 80-94%. In big animals with heart rate

of 60-80 beats/min (sheep, pig, goat, cow), the content

of the short titin isoform decreases to 41-76% [99]. It is

supposed that the predominance of this titin isoform

promotes an increase in the rate of the myocardium

active contraction during the early systolic shortening

and for the faster relaxation of the heart [99]. Thus, vari-

ability in the length of the resilient–elastic region of the

titin isoforms in the I-band of the sarcomere is an impor-

tant component of the molecular mechanism involved

in the regulation of mechanical and contractile proper-

ties of cardiac muscle. Variability in the length of the

extensible region of the titin molecule is characteristic

also for its N2A-isoform in skeletal muscles. In particu-

lar, alternative splicing leads to generation of the titin

N2A-isoform with shorter I-part of the molecule in the

m. psoas (molecular weight ∼3300 kDa) and longer I-part

Fig. 2. Posttranslational mechanisms of changes in the stiffness of titin. Generation of disulfide bonds in the N2B region and phosphorylation of

PEVK by cAMP-dependent protein kinase contributes to the stiffness of the molecule. On the contrary, phosphorylation through cAMP/cGMP-

dependent protein kinase of the N2-B-sequence and S-glutathionylation of unfolded Ig-domains of titin reduces stiffness of titin molecules.

Fig. 1. Schematic picture of the domain structure of titin cardiac isoforms in the sarcomere I-band. The sequence of the titin domain struc-

ture is presented according to the UniProtKB database – Q8WZ42 (TITIN_HUMAN). Both isoforms contain identical sequences: the prox-

imal sequence Ig10-Ig20 and the distal sequence Ig80-95. As differentiated from the shorter and stiffer N2B-isoform, the N2BA-isoform of

titin has the longer middle region consisting of immunoglobulin-like domains Ig22-Ig79, the majority of which is a variable (differently

spliced in N2BA-isovariants) region (Ig25-79). The PEVK sequence in the N2B-isoform is shorter. Both isoforms contain the unique N2-B

sequence consisting of three Ig-like domains and a unique sequence containing 572 a.a. that is located after Ig22. In the N2BA-isoform there

is also the N2A sequence consisting of four Ig-like domains and a region of unique sequence containing 106 a.a. (located before the PEVK

region); in the scheme, their localization is shown by asterisks (N2B – black, N2A – gray).
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of the molecule in the m. soleus (molecular weight

∼3700 kDa) [100]. The functional significance of such

variability in the length of the elastic I-part of the titin

N2A-isoform in skeletal muscle isoforms remains

unknown.

Stiffness and elasticity of titin molecules are regulat-

ed not only through changes in their length in the sar-

comere I-zone, but also through posttranslational modi-

fications [101] (Fig. 2). It has been shown that phospho-

rylation of the N2-B region by cGMP- or cAMP-

dependent protein kinases decreases the stiffness of the

titin molecule, whereas phosphorylation of the PEVK-

sequence (enriched with residues of proline, glutamic

acid, valine, and lysine) by cAMP-dependent protein

kinase increases its stiffness [102, 103]. Stiffness of titin

molecules can be induced by oxidative stress emerging in

myocardium infarction, obesity, or diabetes mellitus,

which makes worse the diastolic function of the left ven-

tricle [104]. This is associated with generation of disulfide

bonds in the titin N2-B sequence, which enhances the

stiffness of the molecule. It has been also shown that the

enhanced stiffness of titin can be compensated due to

reversible S-glutathionylation of cysteines in the unfold-

ed (due to increased load on the sarcomere) Ig-domains

[104].

Mechanical properties of titin can be regulated more

finely through variations in the identity of the amino acid

sequence of its domains. This hypothesis was proposed

based on data about the different aggregability in vitro of

titin domains with different degree of amino acid

sequence identity [105] and on our calculations of the Ig-

domains of the variable region of the I-band of the N2B-

and N2BA-isoforms of titin (Fig. 1). Data obtained using

the dynamic light scattering method revealed that the

aggregation rate in vitro of titin domains with higher iden-

tity of the amino acid sequence was higher than that of

titin domains with lower identity of the amino acid

sequence [105]. Using the BLAST program, we found

that the domain of a variable region expressed only in the

N2BA-isoform has higher identity of amino acid

sequence (∼32%, calculated for 26 domains) than that of

other domains of the I-band of the N2B- and N2BA-titin

isoforms (∼23-25%, calculated for 30 domains). Up to

now, there is no exact idea about the number of molecules

of this giant protein and about their arrangement in the

sarcomere I-band. However, considering data on titin

aggregation in vitro [29, 30, 106, 107], including its amy-

loid aggregation [29], the binding in vivo of closely local-

ized domains of one or several molecules of this protein

cannot be neglected. In this case, it may be supposed that

the domains of the variable region of the N2BA-isoform

will be more prone to aggregation than other domains.

This will lead to increase in the stiffness of the aggregated

region of the N2BA isoform of titin, which can directly

influence changes in the mechanical and contractile

properties of muscle cells.

AGGREGATION PROPERTIES OF TITIN in vitro

AND in vivo. MECHANISMS OF CELL

PROTECTION AGAINST TITIN AGGREGATION

It is unknown whether the above-mentioned aggre-

gation of titin can occur in vivo. However, studies on the

in vitro aggregation of short amino acid sequences of some

titin domains performed in 2005 [105] and other proteins

[106] led to the conclusion that the capability of aggre-

gating increases if the identity of the amino acid sequence

of the domains is more than 30-40% [105]. These studies

were preconditioned by the earlier works, which revealed

the ability of neighboring identical domains of titin to

form in vitro misfolded structures [107]. Recent studies

published in Nature Communications in 2015 showed that,

independently of the amino acid identity, misfolded con-

formations are produced during the folding of unfolded

titin domains [30]. Molecular simulations allowed the

authors to suppose that a significant part of these mis-

folded conformations can be an intramolecular amyloid

[30]. Note that the higher identity in the amino acid

sequence was favorable for production of more stable

forms [30]. The authors of this study supposed that mul-

tidomain proteins including titin during evolution could

undergo changes reducing the identity of the amino acid

sequence of their domains for preventing or decreasing

the probability of formation in vivo of resistant protein

aggregates, including amyloid aggregates [30].

Nevertheless, the possibility of titin molecules to

form aggregates in vivo in the sarcomere I-band cannot be

excluded. It has been shown that during sarcomere exten-

sion, the titin domains can unfold, uncovering latent

hydrophobic regions, and this can lead to aggregation of

the protein and disturbance of its functions [108, 109].

The aggregation of unfolded Ig-domains in the I-band

can result in an abnormally high stiffness of titin mole-

cules and, consequently, of myocytes [110]. Interaction of

this part of titin molecule with small heat shock proteins

(sHsps) capable of suppressing aggregation of many pro-

teins is one of the mechanisms preventing Ig-domain

aggregation in the sarcomere. In particular, it has been

shown that Hsp27 and αB-crystallin do not interact with

distal Ig-domains localized near the sarcomere A-band,

but they bind to Ig-domains of the titin molecule extensi-

ble part, which is localized between the Z-disc and PEVK

[110]. It should be noted that these Ig-domains, as dis-

criminated from PEVK and N2-B-sequences, have a

higher tendency for aggregating under conditions of par-

tial denaturation [110]. How can these differences be

explained? It is known that proteins with unordered

structure are resistant to aggregation due to different fac-

tors: a high total charge and a low hydrophobicity, a small

number of amyloidogenic regions, and a high content of

proline residues [105, 111]. The PEVK region of titin is

enriched with proline and has a comparatively high total

charge [34]. The N2-B-sequence also contains many
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proline residues and higher total charge than the typical

Ig-domain of titin [110]. Thus, the presence in the titin

molecule of PEVK and N2-B-sequences decreases the

probability of in vivo aggregation of this part of the pro-

tein. However, under conditions of muscle overextension,

which occurs during intensive physical exercises and in

pathologies (e.g. at ischemia when the death of myocytes

can lead to overextension of the adjacent cells), the prob-

ability of unfolding and, consequently, of aggregation of

titin Ig-domains increases [86]. Although the unfolded

Ig-domains of titin are folding repeatedly in vitro in the

absence of small heat shock proteins [108], this process

can be difficult in vivo under a sufficiently tight localiza-

tion of proteins in the sarcomere even if the above-men-

Fig. 3. Morphological similarity of titin molecule (a) and functional amyloids of spidroin – the protein of spider silk (b).
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tioned proteins are present. The higher identity of the

amino acid sequence of the variable region of the N2BA-

isoform increases the probability of titin aggregation in

vivo, which undoubtedly will lead to a significant increase

in the stiffness of titin filaments. In turn, this will have

negative consequences for mechanical properties and

contractility of myocytes and the muscle as a whole.

Increased proteolysis of titin in the sarcomere can protect

against these changes. However, this pathway does not

exclude accumulation of titin fragments in cells and for-

mation of amyloid aggregates by them in the cytosol. In

this case, cell autophagy is the last stage of the organism’s

protection against uncontrolled aggregation of cytoskele-

tal proteins of the sarcomere [110, 112, 113].

Can titin aggregates accumulate in vivo? Our studies

in vitro have shown that such possibility exists. In particu-

lar, it has been shown that under conditions close to phys-

iological, smooth-muscle titin can form amyloid aggre-

gates within short time intervals (tens of minutes) [29].

Circular dichroism did not reveal structural rearrange-

ments of the type α-helix transition into β-structure,

which are characteristic for other amyloidogenic proteins

[114, 115]. A pronounced cytotoxic effect of titin amyloid

aggregations was detected on smooth muscle cells of

bovine aorta culture, and this effect was accompanied by

disorganization of the actin cytoskeleton [29]. These data

not only demonstrated that titin amyloid aggregation can

occur in vivo, but also suggest that this protein should be

involved in the development of muscle amyloidoses.

POSSIBLE FUNCTIONAL ROLE OF TITIN

AGGREGATION IN SARCOMERES

It is generally believed that amyloids play a negative

role in living cells. Due to their stiffness, amyloid fibrils

can mechanically tear the cell membrane; therefore, the

accumulation of amyloid aggregates, which are resistant

to proteolytic degradation, leads to cell death [116, 117]

and development of a pathologic process [118]. However,

it should be noted that a high stiffness is also inherent in

functional amyloids, e.g. amyloids of spidroin, a protein

participating in formation of solid elastic threads of the

spider silk. Functional amyloids of spidroin and the titin

molecule are similar in morphology (Fig. 3). The silk pro-

tein is enriched with a β-folded structure (up to 40-50%

of the total volume of a silk fibril [119]), whereas the

remaining part is filled with less ordered, possibly amor-

phous structures [120]. In addition to the β-folded struc-

ture, the titin molecule has about 50% amorphous struc-

tures that has been shown by circular dichroism [29] and

short α-helical regions, e.g. in the PEVK sequence [40] –

in the kinase domain [121].

Thin elastic threads of titin molecules form the intra-

cellular cytoskeletal extensible carcass, which determines

mechanical properties of muscle tissue. Perhaps the

aggregation of titin molecules in the sarcomere I-band,

including “formation of intramolecular amyloid struc-

tures”, can play a functional role – to contribute to

increasing muscle stiffness. In turn, this can play a pro-

tective role counteracting overextension of sarcomeres

having unfavorable consequences for the muscle.

Changes in the mechanosensory role of titin in the case of

aggregation of its molecule also cannot be excluded.

In conclusion, based on analysis of data on the prop-

erties of titin, we pay special attention to the following

facts: titin forms the intracellular cytoskeletal elastic car-

cass that determines mechanical properties of sarcomeres

and muscle as a whole; titin forms amyloid aggregates in

vitro; on folding of unfolded domains in the titin mole-

cule, amyloid-like structures can be produced; titin has a

morphological similarity with functional amyloids of

spidroin. Based on these data, can we state that titin is a

molecular amyloid? Up to now, we cannot answer this

question in the affirmative. However, it is clear that dur-

ing evolution one of the most unique structures of living

nature has been created that combines features of amy-

loid and elastic protein participating not only in forma-

tion of sarcomere and maintenance of its structure, but

also in the fine regulation of the actin–myosin interaction

and intracellular signalization.
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