
Many individual treatments are known that modest-

ly extend lifespan in rodents and, presumably, in humans,

but the interactions among these treatments have barely

been explored. It is far too optimistic to expect the bene-

fits to add linearly. There is much redundancy among the

mechanisms of action of the known interventions, so the

underlying metabolic pathways would become saturated.

Interference is the expected result for most combinations.

But more rarely, we may find pairs of interactions that

synergize; in other words, in a few cases we might expect

that the mean life extension from two treatments A and B

is equal to or even greater than the sum A + B of the ben-

efits from the treatments separately. For example,

rapamycin and metformin are reported to synergize [1],

and angiotensin inhibitors work via a pathway distinct

from either of these [2].

METHODS

Life extension treatments have usually been tested

separately, one at a time, at a single dosage or a few dosages.

This is a reductionist approach, appropriate for building a

foundation of understanding at the metabolic level.

However, if our goal is practical life extension in the near

term, it may be more efficient to think as an inventor or

engineer would. With high-throughput screening of candi-

date treatments, we might hope to identify the most prom-

ising combination of treatments and the most effective

dosages. In this way, we sacrifice understanding, but maxi-

mize our probability of identifying a protocol of extraordi-

nary effectiveness, given limited time and resources.

There is a growing backlog of promising ideas that

have yet to be tested in mammals. In addition, there are

many effective treatments, already identified and tested

singly, but not in combination.

Herein, I ask: What would be an appropriate experi-

mental and statistical protocol for testing new treatments

and combinations of known treatments, if our resources

are limited and our goal is to identify the outliers that

have extraordinary effectiveness? As examples, I have

explored two methodologies in numerical simulation. In

one, a single treatment is tested in a range of dosage

domains, and the results are fitted to a parametrized
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Abstract—An experimental design is proposed for high-throughput testing of combined interventions that might increase life

expectancy in rodents. There is a growing backlog of promising treatments that have never been tested in mammals, and

known treatments have not been tested in combination. The dose-response curve is often nonlinear, as are the interactions

among different therapies. Herein are proposed two experimental designs optimized for detecting high-value combinations.

In Part I, numerical simulation is used to explore a protocol for testing different dosages of a single intervention. With rea-

sonable and general biological assumptions about the dose-response curve, information is maximized when each animal

receives a different dosage. In Part II, numerical simulation is used to explore a protocol for testing interactions among

many combinations of treatments, once their individual dosages have been established. Combinations of three are identified

as a sweet spot for statistics. To conserve resources, the protocol is designed to identify those outliers that lead to life exten-

sion greater than 50%, but not to offer detailed survival curves for any treatments. Every combination of three treatments

from a universe of 15 total treatments is represented, with just three mice replicating each combination. Stepwise regression

is used to infer information about the effects of individual treatments and all their pairwise interactions. Results are not quite

as robust as for the dosage protocol in Part I, but if there is a combination that extends lifespan by more than 50%, it will be

detected with 80% certainty. These two screening protocols offer the possibility of expediting the identification of treatment

combinations that are most likely to have the largest effect, while controlling costs overall.

DOI: 10.1134/S0006297917120057

Keywords: lifespan, life extension, combined treatments, high-throughput testing, rodents



COMBINING LIFE EXTENSION TREATMENTS 1457

BIOCHEMISTRY  (Moscow)   Vol.  82   No.  12   2017

dose-response template. In the second, combinations of

three treatments are tested, each on a small number of

test animals, and the results are deconvoluted using mul-

tilinear regression.

For both these proposals, real laboratory data are not

yet available, so I have analyzed computer-generated data

to evaluate the effectiveness of the proposed methodology.

RESULTS AND DISCUSSION

I. Studies of a single treatment at various dosages

The model begins with 80 (simulated) mice, each

receiving a different dosage of a trial drug. Dosages range

over a factor of 100, and are equally spaced on a logarith-

mic scale. Sample data are randomly generated, based on

assumptions about the dose-response curve that are var-

ied in each simulated case. Then the data are analyzed,

and an attempt is made to recover the input dose-

response curve based on the random output for 80 mice.Fig. 1. From Spindler et al. (2013) [3].
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Fig. 2. Sample illustrating the variety of different curve shapes that can derive from various values of two parameters A and B. Most common-

ly, we expect a linear increase in lifespan from small doses, and a curve that levels off with saturation and then declines with toxicity. X axis is

dosage in arbitrary units. Y axis is the natural log of lifespan compared to untreated.
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Fig. 3. a) Illustrative analysis of a single case. Input is the upper curve 1, parametrized by the two constants A and B. Output is the 80 dots,

representing mouse lifespans in response to 80 different dosages between 0.01 and 1.0. Dots are clustered to the left because the distribution is

logarithmic. Analysis of these 80 data points produces the reconstructed constants A′ and B′, from which the lower curve 2 is drawn. The fact

that a reasonable approximation can be extracted from such noisy data suggests that the data are well-used, and not much statistical power is

being wasted. b) This chart was generated from the same data as the above, with the 80 mice reordered by lifespan. It offers the familiar shape

that reassures us that the experiment was well-done. Note however that each of the mice in this cohort received a different dosage, and this

tends to spread out the X axis and also make it a little bumpier than it would be otherwise.
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1. Mean lifespan for each mouse is computed from a

quadratic dependence on dosage, ln(LS) = C + Bx – Ax2,

where x is dosage and A, B, and C are parameters to be

derived from regression.

2. Actual lifespan of each individual mouse is gener-

ated from a Gaussian distribution with a mean computed

as above and a standard deviation equal to 20% of the

mean. The 20% value is typical of the standard deviations

of lifespans of mice under identical treatment.

3. If the base lifespan for no treatment is well-estab-

lished ahead of time, then the parameter C in the quad-

ratic formula is known, and similar accuracy can be

obtained with only 40 mice, using a two-parameter

model. (See Figs. 1 and 2 for illustration.)

Results for each trial consist of ages at death for 80

mice, each of which received a different dosage. For

analysis, the logarithms of the 80 lifespans are subject to

bi-linear regression against dosage x and x2. This proce-

dure aims to recover the original parameters A, B, and C,

and I call the corresponding regression parameters A′, B′,

and C′. Each such trial and analysis was repeated 10,000

times, simulating 10,000 replicates of the same experi-

ment. The 10,000 runs constitute one “case”. I repeated

the analysis for 100 cases, systematically exploring the 2-

dimensional parameter space of A and B that determine

the assumed dose-response curve (C is arbitrary). (See

Fig. 3, a and b.)

Overall, the computed values of life extension B′x –

A′x2 tracked the input values of Bx – Ax2 well, with a cor-

relation r2 = 0.82. B′ tracked B well, and A′ tracked A less

well. The life extension at optimal dose was within 1% of

the input values for an average 85% of all trials, and with-

in 5% for 95% of all trials. The slope B′ was within 1% of

the target coefficient B for 80% of all trials, and within

5% for 82% of trials. (Where the slope B′ strayed from B,

usually A′ varied in parallel, so that the errors mutually

mitigated one another.) (See Figs. 4 and 5.)

II. Studies of treatment combinations using all possible

triples

Begin with 15 proven or promising treatments. There

are C(15,2) = 105 pairs that may potentially interact. It

will be efficient to combine treatments in 3′s rather than

2′s, then use regression analysis to deduce the effects of

individual treatments and also their pair interactions.

(Testing less than three at a time requires more mice, and

also loses information about possible triple synergies.

Testing more than three at a time entails numerical diffi-

culties; inversion of larger matrices is hypersensitive to

sampling errors in the data.)

There are C(15,3) = 455 distinct triple combina-

tions. Each triple is replicated in three mice, for a total of

1365 mice. Each treatment, then, is present in

3·C(14,2) = 273 mice, and each pair of treatments is

present in 3·(15 – 2) = 39 mice. Thirty-nine replicates are

a sufficiently large sample to extract information with

confidence about each pair interaction. This is the math-

ematical economy of scale that makes this size study a

sweet spot for testing the methodology.

Critical assumptions:

• pairwise but not 3-way interactions were not

explicitly considered in modeling this simulation.

(Preliminary analysis suggests that including 3-way inter-

actions will not change reliability of results.);

• most pairs are assumed to interact negatively, but

the simulation allows for some positive synergies (and

seeks to identify these);

• for each treatment, only a single dosage is tested;

Fig. 4. The methodology described here works very well for dose-response curves like the one on right, with small curvature, and fairly well

for curves like the one at left.
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• parameters were chosen randomly such that there

was always a combination of 3 that offered life extension

greater than 50%.

Recipe for analysis: 

1) 105 trivariate regressions, one for each pair of

treatments. For example, the first regression would have

three independent variables: A, B, and A×B, where A×B

is a synergy term;

Fig. 5. This chart shows the accuracy with which the computed parameters A′, B′, C′ could reproduce the input results for given (randomly-

generated) dosages. For example, the leftmost bar means that in 18% of cases, the methodology reproduced the “right answer” for expected

lifespan within 1%. The leftmost five bars together mean that in 70% of cases, the accuracy was within 5%.

12%

10%

8%

6%

0.01 0.02 0.03 0.04 0.05 0.06

Histogram of Accuracies in computing response to a given dosage

20%

18%

16%

14%

4%

2%

0%
0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

Fig. 6. This chart shows that the best combination in the input data

was correctly ranked as #1, 58% of the time. The second bar shows

that it was ranked #2, 16% of the time, etc.

20%

10%

0%
1 2 3 4 5 6

How was Actual Best Triple Ranked?

60%

50%

40%

30%

>
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bination that is selected by the algorithm as #1 based on the data,

versus the input mean lifespan on the X axis. The concentration of

points along the diagonal represents the 58% of cases in which the

selected #1 is correctly identified as the combination with longest

mean lifespan. The wall at the top comes from the fact that the

algorithm cannot do better than identifying #1. The wall on the

left was imposed by filtering input parameters such that there was

always at least one combination that offered mean life extension of

67%.
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2) for each treatment, exclude the three strongest

interactions, as determined in step 1, and perform all 15

single variable regressions. That leaves 11 other cages (33

other mice);

3) use the single regression coefficients from (step 2)

and the triple regression coefficients from (step 1) to pre-

dict a lifespan for each combination of three treatments;

4) construct a weighted average of the result from

(step 3) with the actual average lifespan of the three mice

that received just those three treatments. Optimum

weights are about 85% for the prediction and 15% for the

actual average;

5) compare these predicted lifespans with the “actu-

al” average lifespans that were assumed in generating the

model.

I conducted 20,000 trials, a single replicate of each

trial. The “actual” best combination of three treatments

was selected based on lifespan data 58% of the time; 81%

of the time the best combination was among the top

three, and 90% of the time it was in the top six (out of

455). (See Figs. 6-8.)

If our interest is in identifying the most effective

longevity treatments for potential human use, much more

information can be extracted from each rodent than in

customary lifespan protocols, which are optimized for

basic scientific understanding. The two protocols ana-

lyzed in this work are illustrative, and are not optimized;

nevertheless, they point the way toward more efficient

ways to use our time and our lab resources.

In single-treatment studies, information is maxi-

mized if every individual animal is given a different

dosage. To cover a wide range of dosages, a logarithmic

distribution of dosages is useful, and in lieu of zero-dose

control animals, the distribution may be anchored at the

low end with dosages an order of magnitude below the

expected threshold of effectiveness.

In multi-treatment studies, three seems to be a man-

ageable number of treatments to combine in each animal.

Pairwise and three-way interactions can be inferred by

regression analysis. These results suggest that multiplex-

ing with 1000 to 2000 mice in a single study offers signif-

icant economies of scale compared to combinations of

smaller studies.
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Fig. 8. This is a histogram showing how much life extension is

“left on the table” as a result of misidentification of the best

3-way combination because random variation in life expectancy

fooled the identification algorithm. The left-most bar shows that

the algorithm works optimally in 81% cases, in that the best com-

bination is identified among the top 3. To the right, the probabil-

ities do not descend as rapidly as we might like, and there remains

a 6% probability of missing the best combination by more than

10%.
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