
Mitochondria play an important role in molecular

mechanisms of neuroplasticity, adaptive changes of the

brain that occur in the structure and function of its cells

in response to altered physiological conditions or devel-

opment of pathological disorders [1]. These intracellular

organelles are a crucial target for actions of neurotoxins,

causing symptoms of Parkinson’s disease [1-3]. In the

context of parkinsonism induced by administration of 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),

the protoxin undergoes catalytic conversion by

monoamine oxidase B (MAO B), which is self-inactivat-

ed during this process. The resultant neurotoxin MPP+

(1-methyl-4-phenylpyridinium) inhibits complex I of the

respiratory chain and causes development of symptoms

typical for Parkinson’s disease [3, 4]. Administration of

MAO B inhibitors (e.g. deprenyl or isatin [5, 6]) or sub-

strates competing for the active site of this enzyme (e.g.

phenylethylamine) [7] prevented not only metabolic acti-
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Abstract—Mitochondria play an important role in molecular mechanisms of neuroplasticity, adaptive changes of the brain

that occur in the structure and function of its cells in response to altered physiological conditions or development of patho-

logical disorders. Mitochondria are a crucial target for actions of neurotoxins, causing symptoms of Parkinson’s disease in

various experimental animal models, and also neuroprotectors. Good evidence exists in the literature that mitochondrial

dysfunction induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) influences functioning of

the ubiquitin-proteasomal system (UPS) responsible for selective proteolytic degradation of proteins from various intracel-

lular compartments (including mitochondria), and neuroprotective effects of certain antiparkinsonian agents (monoamine

oxidase inhibitors) may be associated with their effects on UPS. The 19S proteasomal Rpn10 subunit is considered as a

ubiquitin receptor responsible for delivery of ubiquitinated proteins to the proteasome proteolytic machinery. In this study,

we investigated proteomic profiles of mouse brain mitochondrial Rpn10-binding proteins, brain monoamine oxidase B

(MAO B) activity, and their changes induced by a single-dose administration of the neurotoxin MPTP and the neuropro-

tector isatin. Administration of isatin to mice prevented MPTP-induced inactivation of MAO B and influenced the profile

of brain mitochondrial Rpn10-binding proteins, in which two pools of proteins were clearly recognized. The constitutive

pool was insensitive to neurotoxic/neuroprotective treatments, while the variable pool was specifically influenced by MPTP

and the neuroprotector isatin. Taking into consideration that the neuroprotective dose of isatin used in this study can result

in brain isatin concentrations that are proapoptotic for cells in vitro, the altered repertoire of mitochondrial Rpn10-binding

proteins may thus represent a part of a switch mechanism from targeted elimination of individual (damaged) proteins to

more efficient (“global”) elimination of damaged organelles and whole damaged cells.
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vation of MPTP, but also deficiency of the neurotrans-

mitter dopamine and locomotor impairments typical for

this disease.

Thus, brain mitochondria obviously represent not

only the principle subcellular organelles where “the first

act of the scenario” of MPTP-induced Parkinsonism is

realized, but also crucial targets for endogenous and

exogenous neuroprotectors. Good evidence exists in the

literature that neuroprotector mechanisms of certain

antiparkinsonian agents, monoamine oxidase inhibitors,

may be associated with their effects on the ubiquitin-pro-

teasomal system (UPS) [8] responsible for selective pro-

teolytic degradation of proteins from various intracellular

compartments including mitochondria. Mitochondrial

dysfunction induced by MPTP has a significant impact

on functioning of the UPS [9, 10].

Ubiquitin, a 76-residue protein, is widely distributed

in all eukaryotic cells, where it targets proteins for subse-

quent degradation [11-14]. The ubiquitination process

includes several sequential stages that involve several

enzymes (Fig. 1): ubiquitin activating enzyme (E1), ubiq-

uitin-conjugating enzyme (E2), and ubiquitin ligase (E3)

[11-14]. The major function of ubiquitin is (poly)ubiqui-

tination of proteins for their subsequent proteasomal

degradation. In the context of UPS functioning, the 19S

proteasome Rpn10 subunit (as well as extraproteasomal

Rpn10) plays a role as the ubiquitin receptor [15] respon-

sible for delivery of client proteins to the 20S proteolyti-

cally active proteasome, where their subsequent prote-

olytic degradation occurs (Fig. 1) [16].

Isatin (indoledione-2,3) is an endogenous neuropro-

tector found in mammalian brain, peripheral tissues, and

body fluids [17-19]. Besides reversible inhibition of MAO

B and receptor guanylate cyclases [17-19], isatin interacts

with numerous isatin-binding proteins located in various

subcellular organelles including mitochondria [20, 21].

Proteomic profiling of brain isatin-binding proteins

revealed several enzymes directly involved in UPS func-

tioning [22]. Taking into consideration that some isatin

derivatives act as proteasome inhibitors [23, 24], in this

study we investigated the effect of a single-dose adminis-

tration of MPTP and isatin to mice on MAO B activity

and the subproteome of brain mitochondrial Rpn10-

binding proteins.

Fig. 1. Scheme of functioning of the ubiquitin-proteasomal system (UPS).
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MATERIALS AND METHODS

Male C57BL/6 mice (20-25 g) obtained from the

Stolbovaya nursery (Moscow Region) were used in exper-

iments, which were performed at least one week after

their arrival from the nursery. The animals were main-

tained under natural illumination and received standard

laboratory chow (full ration extruded briquette feed,

GOST 50258-92) and water ad libitum. MPTP was inject-

ed intraperitoneally (i.p., 30 mg/kg). Isatin (100 mg/kg,

i.p.) was injected 30 min before MPTP. Control mice

were treated with intraperitoneal injection of saline

(0.1 ml/10 g of weight). Each group contained 6-8 mice.

Behavioral changes induced by MPTP or isatin were ana-

lyzed 90 min after the last administration by means of the

open field test [25] and the rotarod and static rod tests

[26]. The exploratory reaction of mice in the open field

test was defined as the sum of horizontal activity (units)

and vertical activity (units). All procedures were approved

by local authorities for animal research.

Isolation of the brain mitochondrial fraction and

determination of MAO B activity were carried out as

described previously [27, 28].

All procedures related to isolation of mouse brain

Rpn-binding proteins, sample preparation for mass spec-

trometric analysis including liquid chromatography, high

resolution mass spectrometry, and data analysis are given

in the Supplementary materials (see Supplement to this

report on the site of the journal http://protein.bio.

msu.ru/biokhimiya and Springer site Link.springer.com).

Generation and prediction of an interactome/protein

interaction network. Protein annotation in terms of gene

ontology (GO) using categories “Biological process” and

“Molecular function” was performed using UniProt/

SwissProt IDs [29] (release 2016_08 updated on

7.09.2016) as input data and applied for interactive net-

work processing. Interactions of proteins were predicted

using the open access STRING version 10.0 software

platform [30]. A list of positive identifications obtained

during proteomic profiling was used for generation and

prediction of the protein interaction network. The net-

work of physically and functionally interacting proteins

was visualized using a high confidence level (C ≥ 0.7).

The visualization was performed using information about

proteins from three sources: experimental data, databas-

es, and analysis of available texts (e.g. joint references in

annotations to PubMed publications).

RESULTS

Effect of MPTP and isatin on behavioral activity of

mice and on brain MAO B activity. In accordance with

previous studies [3, 31, 32], a single-dose administration

of MPTP caused appearance of movement disorders typ-

ical for animal models of Parkinson’s disease (Table 1).

Pretreatment of mice with isatin before MPTP attenuat-

ed the locomotor impairments induced by the neurotox-

in. In the control mice, isatin administration also

decreased locomotor activity, which may be attributed to

its sedative effect known from the literature [17, 18].

Under these conditions, MAO B activity assayed in the

brain mitochondrial fraction of MPTP-treated mice

demonstrated a statistically significant decrease com-

pared with the control group (18.0 ± 2.6% versus control;

p < 0.01; n = 6 in each group). After sequential treatment

of mice with isatin and MPTP, brain mitochondrial MAO

B activity was basically the same as in the control group.

This suggests that the reversible MAO B inhibitor isatin

effectively prevents interaction of this enzyme with

MPTP and is then effectively washed out of brain mito-

chondria during their isolation.

Proteomic profiling of brain mitochondrial Rpn10-

binding proteins. Affinity-based profiling of Rpn10-bind-

ing proteins of control brain mitochondrial samples

resulted in confident identification of 48 individual pro-

Treatments

Saline (control)

MPTP (30 mg/kg)

Isatin (100 mg/kg) +
MPTP (30 mg/kg)

Isatin (100 mg/kg)

Rotarod,
retention time, s

158.8 ± 20.8

44.6 ± 11.4#

89.6 ± 23.0*

123.3 ± 24.8

Table 1. Effect of MPTP and isatin on behavioral activity of C57BL/6 mice

time of descent, s

7.4 ± 0.8

35.6 ± 11.8#

14.0 ± 1.5*

8.0 ± 1.3*

time of turn, s

2.8 ± 0.4

15.6 ± 5.1#

5.5 ± 1.7*

2.9 ± 0.5

vertical activity,
units 

14.6 ± 1.53

3.5 ± 1.77#

5.4 ± 0.84

7.5 ± 1.38

horizontal
activity, units

73.3 ± 3.6

32.4 ± 4.6#

55.0 ± 7.7*

52.9 ± 3.1*

Open field 

Note: Behavioral activity of mice was evaluated 90 min after MPTP administration. Isatin was injected 30 min before MPTP administration. Data

represent mean ± SEM. Each group contained 6-8 animals. Statistical significance of differences: # p < 0.05 versus control; * p < 0.05 versus

MPTP.

Vertical rod
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teins (Fig. 2a). Functionally, they can be subdivided into

the following groups: (i) proteins involved in energy gen-

eration and carbohydrate metabolism; (ii) proteins

involved in cytoskeleton formation and exocytosis/traf-

ficking; (iii) proteins involved in regulation of gene

expression, cell division, and differentiation; (iv) proteins

involved in signal transduction and regulation of enzyme

activity; (v) antioxidant and protection proteins/

enzymes; (vi) enzymes involved in lipid metabolism.

Most of these proteins (including those traditionally

identified in cytosol or nucleus) are associated with inter-

nal or external mitochondrial compartments, and func-

tional links have been already established for several

groups of the identified proteins (Table S1 in

Supplement). For example, histones identified in this

study (Table S1 and Fig. S1 in Supplement) have been

previously found in different mitochondrial sub-com-

partments [33]. In the internal mitochondrial compart-

ment, histones H1, H2A, H2B, H3, and H4 were identi-

fied among so-called D-loop DNA-binding proteins

[33]. In the external mitochondrial compartment, they

were identified in the outer mitochondrial membrane; it

is even suggested that “H2A and H2B must be integral

outer membrane proteins protruding towards the cyto-

plasm” [33]. In vitro, histones H2A, H2B, H3, and H4

bind to isolated mitochondria and increase outer mem-

brane permeabilization followed by release of proapop-

totic intermembrane space proteins [34].

Effect of neurotoxin MPTP and neuroprotector isatin

on the subproteome of brain mitochondrial Rpn10-binding

proteins. Development of the MPTP-induced parkinson-

ian disorder insignificantly influenced the total number of

identified Rpn10-binding proteins (50 versus 48 control

proteins), but it dramatically changed the profile of

Rpn10-binding proteins (Figs. 2b and 3). In contrast to

the control, the Rpn10-binding proteins of the MPTP-

treated animals were characterized by almost complete

disappearance of cytoskeletal proteins and a reciprocal

increase in proteins referred to the antioxidation/protec-

tion group (Fig. 2). It is especially interesting that Rpn10-

Fig. 2. Distribution of Rpn10-binding proteins of the brain mitochondrial fraction into functional groups: 1) proteins/enzymes involved in

energy generation and carbohydrate metabolism; 2) proteins involved in cytoskeleton formation and exocytosis; 3) protein regulators of gene

expression, cell division, and differentiation; 4) proteins involved in signal transduction and regulation of enzyme activity; 5) antioxidant and

protective proteins/enzymes; 6) enzymes of lipid metabolism.

c                                                   d

a                                                   bControl (n = 48)                                            MPTP (n = 50) 

MPTP + isatin (n = 26)                                 Isatin (n = 25)
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binding proteins specific for MPTP-treated animals

include Cul5-RING ubiquitin ligase complex (G3X914)

directly involved in ubiquitin-dependent catabolic

processes and cerebral cortex cell functioning [35], pro-

tein disulfide isomerase, mitochondrial heat shock pro-

teins, and caspase 3, which is crucial for the development

of MPTP-induced Parkinson’s disease in mice [36, 37]

(Table S2 in Supplement). Interestingly, heat shock pro-

teins and caspase 3 are in the cluster of interacting pro-

teins (Fig. S2 in Supplement).

Administration of isatin to intact mice significantly

reduced the number of Rpn10-binding proteins to 25 and

also altered the profile of Rpn10-binding proteins quali-

tatively (Figs. 2c and 3). Some of the Rpn10-binding pro-

teins specific for isatin-treated mice (cytochrome P450

1A2, cytochrome P450 2D26) (Table S3 in Supplement)

and destined to proteasomal degradation may be involved

in metabolism of isatin itself [17, 18].

Pretreatment of mice with isatin before administra-

tion of MPTP also reduced the number of Rpn10-binding

proteins to 26 (Fig. 2d; Table S4 in Supplement), i.e. to

the level observed after a single administration of isatin,

however, their profiles demonstrated clear differences

(Figs. 2 and 3). It is especially important that the sedative

decrease in behavioral activity of intact mice treated with

isatin and oligokinesia of MPTP-treated mice are associ-

ated with different proteomic profiles and therefore are

realized by different mechanisms.

Thus, it appears that the repertoire of Rpn10-bind-

ing proteins is influenced not only by MPTP, but also by

isatin, which significantly reduces the number of Rpn10-

binding proteins and influences the proteomic profile of

brain mitochondrial proteins interacting with the protea-

somal Rpn10 subunit.

DISCUSSION

Previously it was found that isatin administration to

rats at a dose 50-100 mg/kg resulted in a level of brain

isatin of 9 µg/g [38]. Taking into consideration brain

water content of 0.78 µl/g [39], this corresponds to 77 µM

(provided the administered isatin uniformly distributed in

the brain). Such concentration effectively protected

MAO B against irreversible inhibition by specific mecha-

nism-based inhibitors [40]. Earlier, it was also demon-

Fig. 3. Venn diagram showing the number of common Rpn10-binding proteins in brain mitochondria of investigated groups of mice.

1
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strated that administration of a MAO B substrate prevent-

ed MPTP-induced toxicity by competitively inhibiting

MPTP conversion into MPP+ [41]. A smaller (but statis-

tically significant) decrease in brain mitochondrial MAO

B activity compared with values reported in the literature

[41] may be attributed to the use of different brain prepa-

rations for assay of MAO B activity. We determined MAO

B activity in the total fraction of brain mitochondria,

while others assayed MAO B activity in homogenates of

brain regions representing the main MPTP targets (stria-

tum) [41]. Nevertheless, taken together all these results

indicate that pretreatment of mice with a large dose of

isatin (100 mg/kg) is sufficient for inhibition of MPTP

biotransformation into MPP+. In this context, it should

be noted that isatin concentrations 50-100 µM induce

apoptosis in various cell cultures [42-45]. Moreover, for

some cell lines it was demonstrated that apoptosis

induced by isatin involved the mitochondrial pathway

[45].

Besides MAO B, isatin can possibly interact with

numerous isatin-binding proteins [21, 22]. Recent pro-

teomic profiling of brain isatin-binding proteins revealed

several UPS-related enzymes [22]. These included prob-

able E3 ubiquitin protein ligase MYCBP2 (Q9TPH6),

ubiquitin carboxyl terminal hydrolase 24 (B1AY13), E3

ubiquitin protein ligase MIB2 (Q8R516), E3 ubiquitin

Fig. 4. Clusters of interactions of brain mitochondrial Rpn10-binding proteins (the constitutive pool). Clusters of physical and functional

interactions of proteins were generated by results of identification obtained during proteomic profiling. Names of genes coding the protein

products correspond to those listed Table 2.

Cluster 2

Cluster 1
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protein ligase HUWE1 (Q7TMY8), ubiquitin conjugating

enzyme E2 variant 1 (Q9CZY3), and polyubiquitin B

(P0CG49). Mapping of identified isatin-binding proteins

to known pathways suggests that some of them participate

in the parkin (E3 ubiquitin-protein ligase)-associated

pathway (Gene ontology reference CH000000947) [22].

Since the probability that hits in this pathway represent

accidental events is as low as 2.5·10–5 [22], it appears that

isatin may interfere with various components constituting

the UPS.

The 19S proteasome Rpn10 subunit plays an impor-

tant role in recognition of substrates destined to proteaso-

mal degradation [15, 16]. Results of the present study

indicate that the Rpn10 subunit can bind certain mito-

chondrial proteins and thus participate in their delivery to

targeted proteasomal degradation.

Proteomic profiling of mitochondrial fractions from

animals of all groups (control, MPTP-treated mice,

isatin-treated mice, and mice treated with isatin and

MPTP) revealed existence of a constitutive pool of mito-

chondrial Rpn10-binding proteins. This pool insensitive

to either the neurotoxin MPTP or the neuroprotector

isatin (Table 2 and Fig. 4) includes serpins/protease

inhibitors, histones, MAPK (mitogen-activated protein

Number
in UniProt

database

Q00623

Q00896

P07758

P07759

P22599

P28665

Q00897

Q03734

Q9Z1R9

D3Z3G6

P62806

Q6GSS7

Q6ZWY9

Q8BFU2

G3UWL7

Cluster
of inter-
action 

(C � 0.7)

1

1

1

1**

1

1

1

1**

1**

2

2

2

2

2**

2

Table 2. Brain mitochondrial Rpn10-binding common for all groups of proteins

Biological process

lipid transport, phospholipids
removal 

negative regulation 
of endopeptidase activity

negative regulation 
of endopeptidase activity

negative regulation 
of endopeptidase activity

negative regulation 
of endopeptidase activity

negative regulation 
of endopeptidase activity

negative regulation 
of endopeptidase activity

negative regulation 
of endopeptidase activity

proteolysis

MAPK cascade

nucleosome assembly

nucleosome assembly, 
suppression of gene expression

nucleosome assembly

nucleosome assembly, 
suppression of gene expression

*not shown

Protein function

lipid binding

serine endopeptidase
inhibitor

serine endopeptidase
inhibitor

serine endopeptidase
inhibitor

serine endopeptidase
inhibitor

serine endopeptidase
inhibitor

serine endopeptidase
inhibitor

serine endopeptidase
inhibitor

serine endopeptidase
inhibitor

MAP kinase activity

DNA binding

DNA binding

DNA binding

DNA binding

nucleic acid binding

Gene

Apoa1

Serpina1c

Serpina1a

Serpina3k

Serpina1b

Mug1

Serpina1d

Serpina3m

Prss1

Mapk3

Hist1h4a

Hist2h2aa1

Hist1h2bc

Hist3h2a

H2afz

Protein name

apolipoprotein A-I

alpha-1 antitrypsin 1-3 
(serpina 1c)

alpha-1 antitrypsin 1-1 
(serpina 1a)

serpin (serine protease
inhibitor A3K)

alpha-1 antitrypsin 1-2 
(serpina 1b)

murinoglobulin-1

alpha-1 antitrypsin 1-4 
(serpina 1d)

serpin (serine protease
inhibitor A3M)

MCG124046 − serine 
protease 1 (trypsin 1)

MAPK 3

histone H4

histone H2A type 2-A

histone 42B type 1-C/E/G

histone H2A type 3

histone H2A

* Biological process not shown in available databases.

** Referred to this cluster at moderate confidence level (C ≥ 0.4).

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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kinase), and apolipoprotein A-I. There is increasing evi-

dence that serpins (serine protease inhibitors) not only

control activity of certain proteases, but also regulate cell

proliferation and apoptosis [46]. Mutant serpins are

degraded by UPS enzymes [47]; a conjugate of serpin 2a

with a ubiquitin homolog was found in activated

macrophages [48]. Recently, it has been demonstrated

that apolipoprotein A-I, the principal HDL (high-densi-

ty lipoproteins) protein, is associated with mitochondria

[49], and glycated HDL induced apoptosis of cells via

mitochondrial dysfunction [50]. Taking into considera-

tion MAPK association with mitochondria [51], submi-

tochondrial localization of histones [34, 35], and an

important role of MAPK-dependent phosphorylation of

histones for development of apoptosis [52], functional

links between proteins identified in this study (Fig. 4)

suggest that the constitutive pool of mitochondrial

Rpn10-binding proteins play a role in regulation of apop-

tosis.

The repertoire of the variable pool of brain mito-

chondrial Rpn10-binding proteins is sensitive to effects of

both neurotoxin MPTP and neuroprotector isatin (Figs. 2

and 3; Figs. S3 and S4 in Supplement). Considering that

isatin stimulates apoptosis in various cells [42-45] and its

analogs act as apoptosis-inducing inhibitors of UPS [23,

24], there are reasons to believe that the altered repertoire

of mitochondrial Rpn10-binding proteins induced by

isatin may represent a part of a switch mechanism from

targeted elimination of individual (damaged) proteins to

more efficient (“global”) elimination of damaged

organelles and whole damaged cells.

Thus, in the context of molecular mechanisms of

neuroplasticity that are associated with regulatory effects

of isatin on brain mitochondria under conditions of

MPTP-induced experimental parkinsonism, the neuro-

protector effect of isatin may be associated with several

interrelated actions:

– inhibition of MAO (B)-dependent conversion of

MPTP to MPP+;

– interaction with isatin-binding proteins and mod-

ulation of their functions;

– altered repertoire of mitochondrial proteins inter-

acting with the receptor, Rpn10, responsible for proteaso-

mal delivery of (damaged) proteins.
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