
It is well known that a genome contains all informa-

tion about the development and functioning of a living

organism. Development of new sequencing methods has

allowed full genome sequencing of many different organ-

isms. It has become possible to look for individual genet-

ic differences that define predisposition to various dis-

eases. At the same time, new methods for genome engi-

neering have been developed. Targeted changes in the

genome of living cells and organisms are powerful tools

and potential ways for therapy of genetic diseases. This

field is actively developing because of the large number of

possible applications. For example, gene function can be

defined by inactivation of a given gene and analysis of the

consequences. Addition of an affinity tag can be used for

purification of a protein and its partners, while addition

of a fluorescent protein tag can facilitate the analysis of

tissue-specific expression and localization of a gene prod-

uct. By introducing a specific mutation in the genome of

laboratory animals, one can develop a model of human

disease, which can be used for optimization of treatment

approaches. Finally, gene-modified organisms are

increasingly used in industry and agriculture.

In general, modifications of a genome comprise

either inactivation of a gene (knockout), insertion of a

foreign gene (knockin), or modification of a gene.

Insertion of a foreign gene is mainly nonspecific; it can be

inserted in any locus of a genome. Gene inactivation or

modification is, on the contrary, more specific and should

occur only in a certain locus of a genome. Nevertheless,

this rule has some exceptions: sometimes, foreign genes

are inserted into a chosen genome locus, where expres-

sion is efficient and does not have negative effects. Such

methods as homology recombination [1-3], site-specific

recombination [4], meganucleases [5], transposons [6, 7],

or viral vectors [8, 9] have been widely used for genome

engineering. Recently, methods using targeted cleavage of

a chosen locus of a genome by new generation nucleases

have become very popular.
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erologous genes into the genome.
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METHODS OF NON-DIRECTED

GENE INSERTION

Cell lines and transgenic animals constitutively

expressing a foreign gene are usually generated using

methods of random gene insertion, like direct injection of

linear DNA in oocytes or viral vectors and transposons.

Injection of linear DNA is the simplest, but not very effi-

cient method, which often results in the insertion of mul-

tiple copies of a transgene that form concatemers [10].

Viral vectors are very useful for delivery of foreign DNA

into cultured cells, but they have a number of drawbacks

when working with transgenic animals as far as viruses are

not able to get through the pellucid zone [11], while eggs

without the pellucid zone dissociate easily to blastomeres

[12]. Viral vectors can also have undesirable effects when

used for gene therapy [13-16]. Generally, transposon-

based vectors are used for insertion of various sequences

into a genome (Fig. 1). Transposons are mobile elements

capable of moving through a genome. DNA transposon

consists of a gene coding for a transposase (an enzyme

necessary for transposition) flanked by two inverted

repeats (IR). Transposons move through the genome via

the mechanism of cutting and insertion or copying and

insertion. Integration into a genome occurs randomly.

Some features of the transposition mechanism make

transposons attractive as vectors for gene delivery. Only

one protein – transposase – is necessary for integration

both in vitro and in vivo. Transposase interacts with spe-

cific sequences of inverted repeats and assures excision

and integration of DNA flanked by these repeats. Any

gene can be inserted into a genome using a vector bearing

a gene of interest flanked by two inverted repeats and a

gene coding for transposase. The two components can be

delivered into the cell either on separate vectors or within

one.

The only active transposons found in vertebrates –

Tol2 transposons from the hAT family – were isolated

from fish [17]. Two Tcl-like transposons – Sleeping

Beauty and Frog Prince – were reconstructed from inac-

tive transposons from fish [6] or frog [18] genomes,

respectively. Transposon PiggyBac was identified when it

was transferred spontaneously from the insect genome to

the genome of a baculovirus [19]. Until now, Sleeping

Beauty was the most frequently used system for

transgenosis and random mutagenesis. Efficient integra-

tion and expression of a transgene using this system has

been shown in fish, mouse, human, sheep, dog, cow,

monkey, and rabbit cell cultures [20]. This transposon was

also shown to be efficient in mouse [21] and human [22]

embryonic stem cells.

Although viral vectors and transposons are quite effi-

cient, in both cases insertion occurs randomly and not in

a pre-chosen DNA locus. Such random genome changes

can lead to undesirable consequences. An insertion can

cause inactivation of a gene located near the insertion

locus, or, to the contrary, can result in overexpression of a

gene located nearby. This might trigger the development

of cancer cells [23]. Moreover, these methods cannot be

reproduced, since the probability that an insertion will

occur in the same place of a genome is very low.

Directed modification of a genome fragment is pos-

sible using homologous recombination. For a long time,

this method was efficiently applied only in several model

organisms. Methods for modification of the genome of

the yeast Saccharomyces cerevisiae were developed several

decades ago [24, 25]. The success of yeast as a model

organism resulted from a combination of convenient

methods of DNA delivery into yeast cells, high probabili-

ty of homologous recombination, and availability of

selective markers for sorting of cells with insertion of for-

eign DNA.

Modification of the mouse genome became possible

with the development of methods for manipulations with

embryonic stem cells in culture, as well as methods for

selection of clones with efficient integration [26]. Donor

DNA for such manipulations should contain long flank-

ing sequences homologous to the locus of insertion [27].

Markers for negative and positive selection increase the

efficiency of the selection process [28]. Increasing the

amounts of donor DNA has no positive effect; to the con-

trary, in mammalian cells it can considerably increase the

nonhomologous integration [29].

Thus, directed mutagenesis of a chosen gene is not as

easy. The main problem is that the undamaged target

sequence is inert. The recombination level increases only

after the target gene is damaged. Early experiments

showed that DNA damaging agents stimulate homology

recombination between sister chromatids [30]. It has been

shown that natural recombination, including meiotic

crossover [31] and the mating type switch in yeast [32], is

Fig. 1. As soon as the transposase is expressed (oval), it binds to the

inverted repeats of a transposon, inducing excision and further

integration of a transgene.
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initiated by double-stranded breaks in DNA. It was

shown in 1990s that the frequency of homologous recom-

bination could be increased by double-stranded DNA

breaks in a site where recombination should take place

[33, 34].

CONSEQUENCES OF DOUBLE-STRANDED

DNA BREAKS

DNA breaks are regarded by a cell as potentially

lethal damage, so one way to repair double-strand breaks

is to use recombination with a homologous DNA

sequence (Fig. 2).

Homologous recombination. HDR (homology

directed repair) is a way to recover from double-stranded

DNA breaks using a homologous DNA template. The

crucial step of HDR is the formation of a duplex com-

posed of a damaged DNA and a complementary donor

DNA. This interaction is catalyzed by RecA protein in

bacteria and Rad51 protein in eukaryotes [35]. If com-

pared to NHEJ (nonhomologous end joining), homolo-

gous recombination occurs generally in the late S/G2

phases of the cell cycle.

If a homologous sequence is absent, the double-

stranded break can be repaired by NHEJ (Fig. 2), which

can change the gene sequence, since this mechanism is

error-prone [36, 37].

NHEJ. Nonhomologous end joining is a natural way

of double-strand DNA break recovery through the joining

of DNA ends. NHEJ is error-prone and can result in

small deletions or insertions in the site of the damage.

Such alterations can lead to a shift of an open reading

frame, premature translation termination, and degrada-

tion of a transcript through the mechanism of recognition

of premature stop codons (nonsense-mediated decay).

NHEJ can occur during any phase of the cell cycle. In

higher eukaryotes, NHEJ is a major mechanism for repa-

ration of double-stranded DNA breaks [38, 39].

NHEJ can be Ku-dependent or Ku-independent. In

the Ku-dependent process, the ends of DNA are protect-

ed by Ku70 and Ku80 proteins, which interact with DNA

ends and recruit ligase IV and its cofactor. During NHEJ,

single-stranded DNA ends hybridize with a short com-

plementary sequence. In most cases, NHEJ occurs

through hybridization of very short (1-4 nucleotides)

overhangs [38].

The alternative Ku-independent pathway allows the

restoration of DNA breaks without Ku proteins. The

main Ku-independent NHEJ pathway is called microho-

mology-mediated end joining (MMEJ). MMEJ is based

on homology sequences of 5-25 nucleotides. After

hybridization of these sequences, extra nucleotides are

removed and the gaps are filled in. Thus, this pathway

allows longer deletions and insertions in the site of a break

than the Ku-dependent NHEJ pathway does [40].

Both homologous recombination and nonhomolo-

gous end joining, when used with programmed nucleases,

allow introducing changes in a given site of a genome, as,

for example, a gene inactivation (knockout), insertion of

a DNA fragment into a genome (knockin), or gene edit-

ing. Mutagenesis or gene replacement is carried out local-

ly through a double-stranded DNA break, with subse-

quent repair via one of two pathways.

Low molecular weight substances showed rather low

efficiency of double-stranded DNA break induction [41-

43]. Nucleases with flexible specificity turned out to be

the most efficient.

Fig. 2. Double-stranded break (DSB) can be recovered via two pathways: error-prone NHEJ or homologous recombination (HR). NHEJ

recovers double-stranded DNA breaks with random insertions and deletions. Homologous recombination occurs in the presence of a homol-

ogous template, resulting in precise gene correction or a precise insertion or gene replacement in case of artificial DNA template.
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NUCLEASES USED FOR GENOME EDITING

Double-stranded DNA breaks can now be induced

in a given DNA fragment by programmable DNA-bind-

ing zinc-finger proteins (ZF) [44] and TALE (transcrip-

tion activator-like effector) [45], as well as the CRISPR

(clustered regularly interspaced short palindromic repeat)

system/CRISPR-associated protein 9 nuclease (Cas9)

[46]. The latter system consists of the prokaryotic protein

Cas9 and small guide RNA, which helps the nuclease to

distinguish and cut the desired DNA sequence.

Zinc finger nucleases. Zinc fingers are small natural

DNA-binding domains that are quite frequent in tran-

scription factors. Relatively simple rules of DNA recogni-

tion by zinc fingers and the possibility of using several

consecutive protein domains that recognize a continuous

DNA sequence allow creation of artificial DNA-binding

modules based on zinc fingers. Proteins composed of

“programmable” DNA binding and “constant” endonu-

clease parts were the first representatives of a new gener-

ation of tools for directed genome modification. Type IIS

restriction nucleases, for example FokI, are known to

recognize short DNA sequences and to introduce a dou-

ble-stranded break at some distance from the recognition

site. This particularity is due to the fact that DNA-bind-

ing and nuclease domains of these proteins are separated

and can function independently [47]. The nuclease

domain has no obvious sequence-specificity. The site of

the break can be changed by changing the specificity of

the DNA-binding domain [48].

The most convenient zinc fingers used for generation

of site-directed nucleases were those of the Cys2His2 fam-

ily, so-called after four amino acids that coordinate a zinc

atom. Each zinc finger is rather small, about 30 amino

acids (a.a.); its secondary structure consists of one α-

helix and two short β-sheets. The crystal structure of

three zinc finger domains bound to DNA has shown that

each domain recognizes specifically a three-nucleotide

sequence [49].

Zinc fingers are widespread among eukaryotic tran-

scription factors, including those of humans, and the

specificity of some have been identified [50]. Many

genetically engineered zinc fingers have been prepared

[51, 52]. A number of new proteins were made that inter-

act with all 5′-GNN triplets, where N is any base [53], or

with several 5′-ANN and 5′-CNN triplets [54, 55].

Companies such as Gendaq, Ltd. and Sangamo

Biosciences have a large database of efficient zinc fingers

[56].

One of the special features of site-directed zinc fin-

ger endonucleases is that the FokI nuclease domain must

dimerize for DNA cleavage to occur [57, 58]. Therefore,

to induce one double-stranded DNA break, two proteins

have to be designed, both containing DNA-binding and

nuclease domains. Sites recognized by DNA-binding

domains have to be located in the opposite DNA strands,

and have to be inverted and be separated by a short frag-

ment (Fig. 3). Upon interaction of DNA-binding

domains with their targets, two nuclease domains become

located rather close to each other to dimerize and induce

DNA cleavage. The optimal distance between the zinc

finger inverted binding sites is 5-7 nucleotides (n.) [59,

60].

The need for dimerization of nuclease domains

increases the accuracy of recognition as it doubles the

length of the recognized sequence. In fact, two DNA-

binding domains, each composed of three zinc fingers,

recognize a sequence of 18 n., which is sufficient for cut-

ting of one target even in a large genome.

The first genetically engineered enzyme composed

of a set of zinc fingers connected to a nuclease domain

was shown to be active in vitro in 1996 [61]. High effi-

ciency of digestion and recombination was achieved upon

injection of two nucleases and a DNA template in

Fig. 3. ZFN pair bound to DNA. Zinc finger nucleases consist of zinc finger binding domains (ZF) (shown as ovals) and nuclease domain FokI

(shown as lozenge). Each ZF interacts with three nucleotides. Contacts of binding domains with DNA are shown as vertical lines. On aver-

age, 3-4 ZF are needed to recognize 9-12-n. sequence. Two nucleases are needed to induce a double-stranded DNA break because the nucle-

ase domain has to form a dimer to be active.
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Xenopus oocytes [59]. The ZFN (zinc finger nuclease)

pair designed de novo was used successfully to modify the

drosophila genome [37]. Starting from that point, many

ZFN pairs were designed and successfully used for modi-

fications of individual genes in various organisms and cell

lines (Table 1). Though modification efficiency varies, the

average value is about 10%.

Despite all advantages, genome modification using

zinc finger nucleases is a time-consuming process.

Actually, most such proteins are not working [62, 63].

Having access to the database of zinc fingers, one can

chose a set of proteins that will specifically interact with a

given DNA sequence [63-65]. At the same time, it is pos-

sible that a protein that binds its target efficiently in cer-

tain conditions will not bind with the same efficiency

under other conditions [62]. At least three binding

domains are needed to provide sufficient affinity, but not

all proteins bind DNA with the same efficiency.

Additional domains can be added to increase the affinity,

although it can decrease the activity [66]. Additional

binding domains allow increasing not only the affinity,

but also the specificity, which also plays an important role

in overall performance of this system. Shortening of the

distance between binding domains also improved speci-

ficity [67].

Finally, any gene in any organism can be modified

using a correctly chosen pair of zinc finger nucleases.

Everything depends on the interaction of a DNA-binding

domain with a target sequence and on the DNA repair

mechanism. Protein pairs that function well together have

been selected and registered in the database [68, 69] and

can be used in the future.

TALEN. Transcription activator-like effector nucle-

ases (TALENs) are a new generation of “programmable”

modular DNA-binding proteins. Like ZFN, TALEN

proteins are composed of DNA-binding domains derived

from TALE proteins and a nonspecific FokI endonucle-

ase domain [70].

TALE protein is a virulence factor from bacteria of

the Xanthomonas family that infects plants. TALE pro-

teins consist of several identical domains that have some

structural particularities: a signal of nuclear localization,

N-terminal translocation signal, acid active domain, and

central repeating DNA-binding domain. TALE proteins

differ only by the number and sequence of their DNA-

binding domains [71]. Each repeat consists of 34-35 a.a.

Amino acids in positions 12 and 13 represent a variable

site (repeat variable diresidue, RVD) that defines the

specificity of the DNA binding domain to one nucleotide

[71, 72]. Bioinformatic analysis and practical experi-

ments have shown the mutual correspondence between

RVD of TALE proteins and nucleotides in a target DNA

sequence. Various combinations of amino acids in the

RVD can play a role in recognition of one or more

nucleotides. For example, the asparagine–isoleucine pair

(NI) corresponds to A; histidine–aspartic acid (HD) cor-

responds to C; asparagine–glycine (NG) – to T;

asparagine–asparagine (NN) – to A and G; asparagine–

serine (NS) – to A, C, G, and T; asparagine–lysine

(NK) – to G [73].

Many laboratories have shown that TALENs are as

efficient as ZFNs in cutting of the same genome DNA

sequences [74, 75]. One advantage of TALENs compared

to ZFNs is their lower cytotoxicity [74, 75]. Some data

shows that TALENs have higher specificity, which means

that they induce fewer off-target breaks and stimulate

higher frequency of homologous recombination com-

pared to other nucleases, including CRISPR-Cas9 [76,

77].

Similar to ZFNs, TALENs can be designed to act on

any target DNA (Fig. 4). TALEN genes are easier to

manipulate than zinc finger nucleases. Generally,

TALEN proteins that can recognize a sequence of 18-

20 n. are used. Increasing the number of DNA-binding

domains in TALENs can result in lower specificity [78].

Generation of nucleases with a large number of repeating

units is difficult because of recombination, which can be

stimulated by high sequence similarities of individual

TALE domains [79]. Several methods of TALE assembly

are used [80-83]. It should be noted that the gene coding

for a TALEN is three times larger than one coding for a

ZFN. Since a TALE protein is almost as large as a ZF but

recognizes only one base instead of three, one can assume

that the final construct will be rather large. This raises

problems with the delivery of such constructs into cells.

Because of the large number of TALE protein repeats,

viral delivery to a mammalian genome is also problemat-

ic [79].

Like other nucleases, a TALEN introduces off-target

mutations through breaks in DNA sequences partially

similar to the target sequence [84]. This problem can be

overcome by choosing a unique site that differs from all

Organism

Model organisms

Fruit fly Drosophila melanogaster

Nematode Caenorhabditis elegans

Silkworm Bombyx mori

Zebrafish Danio rerio

Rat Rattus norvegicus

Mouse Mus musculus

Cell lines

Human Homo sapiens

Mouse Mus musculus

Hamster Cricetulus griseus

References

[37, 139, 140]

[141]

[142]

[132, 143, 144]

[145, 146]

[147, 148]

[130, 131, 149-151]

[152, 153]

[154, 155]

Table 1. Using of ZFN for editing of various genomes
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other sites in the genome, at least in 7 n. [85]. Such a site

can be chosen using the website www.talenlibrary.net.

TALEN technology has been successfully used for

modification of various organisms and cell cultures

(Table 2).

Before TALENs started to be widely used as good

alternatives to zinc finger nucleases, the CRISPR-Cas9

system came to the stage.

CRISPR-Cas9. Generation of genetic constructs

coding for ZFNs and TALENs is rather expensive and

time-consuming. Discovery of the CRISPR-Cas9 system

significantly simplified genome modification. It is now

the most popular system for genome editing because it is

efficient and simple in use.

The CRISPR-Cas9 system is an adaptive immune

system of bacteria and archaea against phages or plasmids

[86, 87]. A cell “memorizes” a genome sequence of a

phage that has infected it. A fragment of heterologous

DNA about 20 n. (called a spacer) is taken and inserted

into the genome of the bacterium or archaean to elongate

the CRISPR cassette. The type II CRISPR system is used

for artificial genome editing. In this system, DNA diges-

tion occurs through interaction of CRISPR RNA

(crRNA), which is generated from the spacer; trans-acti-

vating CRISPR RNA (tracrRNA) necessary for the for-

mation of mature CRISPR RNA [88], and endonuclease

CRISPR-associated Cas9 protein. Two RNAs with Cas9

form active endonuclease, which cuts the DNA proto-

spacer corresponding to the spacer with a small three-

nucleotide fragment called PAM (protospacer adjacent

motif). Currently, one chimeric guide RNA composed of

crRNA and tracrRNA is used for genome editing [89],

which simplifies even more the use of the CRISPR system.

The presence of a PAM motif is a prerequisite for

choosing a site of cleavage. In the Streptococcus pyogenes

system (Fig. 5), the source of the first genetically engi-

neered CRISPR-Cas9 system, the endonuclease recog-

nizes a target sequence of 23 n. composed of 20 bases of a

guide sequence, corresponding to crRNA (protospacer),

and 5′-NGG-3′ (or 5′-NAG-3′ to a lesser extent) [90-

92]. The PAM sequence is recognized by Cas9 endonu-

clease [93] and helps to distinguish between the native

sequence of DNA spacer and the heterologous protospac-

er sequence. Cas9 proteins from other organisms recog-

Organism

Model organism

Cow Bos taurus taurus

Pig Sus domestica

Zebrafish Danio rerio

Nematode Caenorhabditis briggsae

Yeast Saccharomyces cerevisiae

Fruit fly Drosophila melanogaster

Cricket Gryllus bimaculatus

Rat Rattus norvegicus

Monkey Macaca fascicularis and Macaca mulatta

Cell lines

Human Homo sapiens

References

[156]

[156]

[157-162] 

[163]

[164]

[165]

[166]

[167]

[168]

[70, 81, 82,

169, 170]

Table 2. Use of TALENs for editing of various genomes

Fig. 4. Pair of TALENs bound to DNA. TALENs consist of TALE binding domains (shown as vertical ovals) and FokI nuclease domain

(shown as lozenges). Specificity of a binding domain is defined by a hypervariable RVD motif. Each TALE domain interacts with one

nucleotide; contacts of binding domains with DNA are shown as vertical lines. Two nucleases are needed to induce a double-stranded DNA

break because the nuclease domain has to form a dimer to be active.
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nize other PAM motifs [94-97]. The PAM site imposes

some limitations when choosing a site for a DNA break.

Specificity of this system is defined by the small

guide RNA and not by the protein as in case of ZFNs and

TALENs. One advantage of this system compared to

ZFNs and TALENs is the ability to digest methylated

DNA [90].

Another important advantage of this system relative

to ZFNs and TALENs is simplicity. It does not require

generation of complicated genetically engineered con-

structs coding for modular DNA-binding proteins. Since

Cas9 is an invariable component, the new construct can

be obtained by simple cloning a short fragment corre-

sponding to the guide RNA [94, 98]. Such simplicity

allows generating a huge set of vectors for a large number

of targets, including whole genome libraries [99-101].

It is relatively simple to introduce multiple changes

in a genome using the CRISPR-Cas9 system, one just

needs to clone several guide RNAs in one vector. This

method was used to create animals [102, 103] and plants

[104] (Table 3) with knockout of several genes simultane-

ously. In the case of ZFN and TALEN systems, two con-

structs are needed to generate one double-stranded DNA

break [105]. Not only DNA coding for the components of

the CRISPR-Cas9 system can be used, but also recombi-

nant Cas9 protein or Cas9 mRNA and in vitro transcribed

guide RNA. This approach is safer for therapeutic pur-

poses [106, 107] and is more convenient in case of

microinjections in fertilized oocytes.

The biggest disadvantage of the CRISPR-Cas9 sys-

tem is probably the rather high frequency of undesirable

DNA breaks in sites partially complementary to the guide

RNA. Several approaches have been developed to over-

come this problem. One consists of decreasing the Cas9

protein activity [90, 108, 109]. Another possibility is to

use Cas9 nickase, which cuts only one DNA strand. In

this case two guide RNAs are needed to direct cleavage of

two complementary strands [92, 110]. Thus, the actual

sequence that defines where to cut DNA is two times

longer, which increases considerably the specificity of the

cleavage. Another way to improve specificity of the system

is to create a hybrid Cas9 protein bearing a FokI nuclease

domain. This approach combines the simplicity of gener-

ating the addressing part, based on guide RNA, and the

need to use two addressing blocks specific for FokI nucle-

ase [78, 111]. In this system, the FokI nuclease domain is

fused with catalytically inactive Cas9 protein (dCas9).

Two guide RNAs are needed to induce a double-stranded

break, since the FokI domain has to form a dimer to cut

the DNA as in the case of ZFNs and TALENs. Thus, the

specificity of digestion increases, leading to a decreased

frequency of undesired mutations.

Researchers also managed to improve the Cas9 pro-

tein specificity by means of mutagenesis [112]. The crys-

Fig. 5. The CRISPR-Cas9 system induces double-strand breaks in genomic DNA. Cas9 that is bound to guide RNA (composed of crRNA

and tracrRNA) interacts with a 20-n. sequence.
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tal structure of S. pyogenes Cas9 protein (SpCas9) in

complex with guide RNA showed that a positively

charged groove located between HNH, RuvC, and PAM-

interacting domains is involved in interaction of Cas9

protein with DNA. It was assumed that neutralization of

a positive charge in this locus would increase the Cas9

protein specificity, which was shown to be true in a triple

mutant [112].

Comparison of nucleases used for genome editing.

Each nuclease has advantages and disadvantages as

described below and summarized in Table 4. The majori-

ty of ZF and TALE nucleases are not functional or have

very low specificity. Despite continuous progress in this

field [63, 68, 69], commercially available proteins work

better in general. The efficiency of mutagenesis using

TALENs varies from 1 to 60% [82, 85], while the effi-

ciency when using a CRISPR-Cas9 system varies from

2.3 to 79% [94, 113, 114]. It is not possible to predict in

advance how functional and efficient each system will be.

Efficiency and accuracy of each system depends on sever-

al factors including the cell type and delivery method.

Specificity of nucleases can be improved by changing

the number of binding domains. Proteins containing

more binding domains recognize longer DNA sequences,

which results in higher efficiency and specificity.

Nevertheless, higher affinity to a target DNA can also

lead to an increase in the number of potential partially

corresponding off-targets. Nucleases forming dimers,

such as nucleases containing a FokI nuclease domain or

Cas9 nickase, have higher specificity. Theoretically,

recognition sites longer than 16 n. (416 = 4.3·109) should

appear, on average, once in a genome such as the human

genome (3.2·109). Nevertheless, all three nucleases being

used cause off-target mutations [84, 90, 115, 116], which

explains their cytotoxicity [117].

Organism

Model organism

Frog Xenopus tropicalis

Rabbit Oryctolagus cuniculus

Zebrafish Danio rerio

Silkworm Bombyx mori

Yeast Saccharomyces cerevisiae

Fruit fly Drosophila melanogaster

Rice Oryza sativa

Rat Rattus rattus

Tobacco Nicotiana benthamiana

Mouse Mus musculus

Cell lines

Human Homo sapiens

Mouse Mus musculus

References
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Table 3. Use of CRISPR-Cas9 for editing of various

genomes

Parameter

Binding domain

Nuclease domain

Success probability

Modification efficiency

Length of target site, n.

Requirements for target site

Frequency of off-target mutations

Cytotoxicity

Length of DNA, kb

Construct generation

Efficiency of multiple modifications

CRISPR-Cas9

guide RNA

Cas9

high

high

22

ends with a triplet NGG or NAG

variable

low

4.2 
(Cas9 from Streptococcus pyogenes)

easy

high

Table 4. Comparative analysis of nucleases used for genome editing

TALEN

TALE

FokI

high

high

30-40

starts with T
and ends with A

low

low

3

medium

low

ZFN

zinc fingers

FokI

low

low

18-36

G-rich

high

variable to high

1

difficult

low
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TALEN and CRISPR-Cas9 systems have lower cyto-

toxicity compared to ZFNs. Among all nucleases,

CRISPR-Cas9 is the simplest and most convenient in use.

However, it was shown to induce many off-target muta-

tions [90, 92, 118]. Cas9 protein can cut sequences that

differ in 5 n. from a target sequence, which means that in

the human genome there are thousands of potential off-

target sequences. Moreover, such off-target interactions

can lead to various chromosome reorganizations [119].

The CRISPR-Cas9 system is extremely insensitive to

noncomplementary nucleotides in the 5′-terminus of the

guide RNA, located far from the PAM site. This particu-

larity of the CRISPR-Cas9 system can be explained by the

fact that bacteria and archaea need to protect themselves

from hypervariable DNA sequences of infecting agents.

Although zinc finger nucleases and TALENs have

the same nuclease domain, they introduce different off-

target mutations. It turned out that TALENs cause dele-

tions more often than insertions (89 against 1.6% in

mammalian cells), while ZFNs cause deletions and inser-

tions with the same frequency [120]. According to some

data, the CRISPR-Cas9 system causes mainly one- or

two-nucleotide insertions [114].

Limitations for target site choice. Although each

ZFN DNA-binding domain recognizes 3 n., and an open

database of nucleases able to recognize all possible triplet

combinations is available [53, 121], the choice of a target

site for a DNA break is limited. Zinc finger nucleases rec-

ognize efficiently a target sequence if the latter is gua-

nine-rich and consists of 5′-GNN-3′ triplets. Thus, one

potential site efficiently recognized by zinc fingers occurs

on average each 100 n. [50]. Various programs helping to

search for potential recognition sites for a ZFN in a given

sequence are available.

A target site for TALENs requires only the presence of

a thymine on the 5′-terminus, which is recognized by two

N-terminal repeats [122]. However, new TALE variants

able to recognize other bases on the 5′-terminus of a target

sequence were recently developed [123, 124]. Ordinary

TALENs are not able to cut sequences containing methyl-

ated cytosine [85, 125]. For recognition of methylated

cytosine, one can use a TALE domain recognizing thymine

and containing the RVD Asn-Gly [126, 127].

The CRISPR-Cas9 system has two limitations for

the target cleavage site. First, the PAM sequence recog-

nized by Cas9 is either 5′-NGG-3′ or 5′-NAG-3′.

Second, there should be a guanine on the 5′-end, since

the guide RNA is transcribed by RNA polymerase III

from the U6 promoter. RNA transcripts without 5′-termi-

nal guanine will be poorly synthesized in the cell.

Addition of one or several guanines to the 5′-end of the

guide RNA can solve this problem [114, 119], since this

fragment of the guide RNA is not crucial for recognition

specificity. Generally, a PAM sequence occurs every 8 n.

Unlike zinc finger nucleases and TALENs, the CRISPR-

Cas9 system can cut methylated DNA [90]. Efficiency of

cleavage varies for different DNA target sites; it is not

always possible to predict what potential site will be effi-

ciently cleaved [128].

Multiple genome modifications. It is possible to mod-

ify several genes simultaneously using all three nucleases.

In case of ZFNs and TALENs, it is necessary to keep in

mind that wrong pairs of dimers can be formed if more

than two nucleases are introduced into the cell. This

increases the frequency of off-target mutations [105]. The

CRISPR-Cas9 system does not have such problems, as

Cas9 is constant and works as a monomer. Simultaneous

inactivation of up to four targets was described in litera-

ture [129].

DELIVERY OF PROGRAMMABLE NUCLEASES

One of the steps crucial for overall modification effi-

ciency is the delivery of nucleases into cells. Nucleases

can be introduced into a cell as a vector coding for a pro-

tein, as in vitro transcribed mRNA, or as a protein.

Generally, DNA is delivered into cells in culture by elec-

troporation or using a liposome transfecting agent [130,

131]. In vitro transcribed mRNA coding for nucleases

ZFN, TALEN, or Cas9, and guide RNA, are usually

injected in oocytes to obtain knockout or knockin ani-

mals [102, 132, 133]. Direct injection of mRNA results in

faster expression compared to transfection with DNA and

helps to avoid undesirable integration of vector DNA into

the genome.

Non-integrating viral vectors are also used for deliv-

ery. Integrase deficient lentivirus vectors (IDLVs), adeno-

viruses, and adeno-associated viruses (AAV) can deliver

genes coding nucleases, both in vitro and in vivo. ZFNs

are the most compact representatives of this class of mod-

ifying agents. DNA coding for nucleases can be packed

into a small AAV vector [134], which is widely used for

gene therapy. IDLVs were successfully used for simultane-

ous delivery of a ZFN with a homologous template in

hemopoietic and embryonic stem cells [135].

Unfortunately, when using IDLVs for delivery of a

TALEN into cells, undesirable recombination can occur

because of high similarity of DNA-binding domain

sequences [79].

For stable expression of a Cas9 protein and a guide

RNA in mammalian cells, an integrating viral vector has

been used [101, 136]. A high level of nuclease Cas9

expression leads to increase in the number of off-target

mutations. When a Cas9 protein is used instead of Cas9

protein-coding DNA, gene coding for the nuclease is not

integrated into the genome. Protein degradation also lim-

its the time when a protein is functional, therefore reduc-

ing the level of off-target mutations [137, 138].

Directed genome editing technologies have become

simpler and more available to researchers. Double-
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stranded breaks generated by specially designed nucleases

facilitate the process of genome editing. Zinc finger

nucleases – the first representatives of this technology –

have been developed and improved for 20 years. The next

generation TALEN and CRISPR-Cas9 systems were also

improved. Nevertheless, some aspects of these technolo-

gies, including efficiency, decrease of off-target muta-

tions, constructs generation, and delivery can be

improved. All modifications are aimed to increase the

overall system efficiency and safety for therapeutic

approaches for genetic diseases. More precise genome

editing without off-target effects will allow manipulating

a genome of a living organism without serious conse-

quences. Programmable nucleases with improved effi-

ciency and specificity will open a new era in biological

research, medicine, and biotechnology.
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