
Protein fibrils with the cross-beta structure are called

amyloids. The term “cross-beta” structure implies that

protein monomers form intermolecular beta-sheets that

are stabilized by numerous hydrogen bonds and located

near perpendicular to the fibril axis [1]. Such organiza-

tion of amyloid fibrils makes them extremely stable and

ensures their resistance to solubilization with ionic deter-

gents such as sodium dodecyl sulfate and sodium lauryl

sarcosinate. Amyloids have been found in all the three

domains of the living world, and they are known to play

both pathogenic and functional roles [1]. Dozens of

incurable human and animal diseases called amyloidoses

are associated with amyloid aggregation of certain pro-

teins [2]. On the other hand, amyloids are necessary for

polymerization of melanin [3] and storage of hormones in

mammals [4], formation of the long-term memory in

mollusks [5] and insects [6], and production of biofilms in

bacteria [1, 7] and archaea [8], as well as for some other

functions in various organisms [1].

Infectious amyloids, or prions, are a special group.

The first prion detected, PrPSc [9], is responsible for some

lethal neurodegenerative amyloidoses in mammals

including humans. The most diverse prions are described

for the yeast Saccharomyces cerevisiae. This organism is

known to have at least eight prions: [PSI+] [10], [URE3]

[11], [PIN+] [12], [SWI+] [13], [OCT+] [14], [MOT3+]

[15], [ISP+] [16], and [MOD+] [17], as well as a prion-like

determinant [NSI+] [18, 19] whose structural protein has

not yet been identified but has been shown to be involved

in the regulation of mRNA [20-22]. Amino acid

sequences of structural proteins of nearly all yeast prions

have a property in common: they are rich in asparagine

(N) and glutamine (Q). It is well known that Q/N-rich
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Abbreviations: CFP, cyan fluorescent protein; DAPI, 4′,6-

diamidino-2-phenylindole (a fluorescent dye specific to AT-

rich regions of DNA); Gln3QN, asparagine-glutamine-rich

fragment of Gln3 protein (a.a. 166-242); [PIN+], prion isoform

of Rnq1 protein; [PSI+], prion isoform of Sup35 protein; SDD-

AGE, Semi-Denaturing Detergent Agarose Gel Electro-

phoresis; Sup35NM, prion-forming region of Sup35 protein

lacking the C-terminal domain functioning as a translation

release factor; YFP, yellow fluorescent protein.
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sequences are prone to produce amyloid-like aggregates.

However, various Q/N-rich sequences can either produce

or not produce aggregates in vivo [15]. Features determin-

ing the capacity of such sequences to aggregate are not yet

established, and it is also unclear how amino acid

sequences surrounding a Q/N-rich region in a full-size

protein molecule can influence aggregation.

Gln3 is a transcriptional regulator of nitrogen catab-

olism [23-25] and one of the richest in Q and N proteins

in the yeast proteome. It was shown earlier that the Gln3

Q/N-rich fragment fused with YFP (yellow fluorescent

protein) (Gln3QN-YFP) can form detergent-resistant

aggregates when overexpressed in the presence of the

[PIN+] prion. Moreover, being fused with reporter con-

structs, this fragment has features of a prion [15]; there-

fore, the full-size protein Gln3 is one of the most proba-

ble candidates for novel prion-forming proteins of S.

cerevisiae. In the present work, we compared the ability of

the full-length Gln3 protein and of its Q/N-rich fragment

to aggregate and analyzed the dependence of this aggre-

gation on the yeast prions, [PSI+] and [PIN+].

MATERIALS AND METHODS

Strains of microorganisms, media, and culture condi-

tions. In the present work, routine methods of S. cerevisiae

genetic manipulations were used [26]. The yeast was cul-

tured at 30°C on solid and liquid complete medium YAPD

or on selective medium MD [27]. To activate expression of

genetic constructs controlled by the promoter CUP1, the

media were supplemented with 150 µM copper sulfate.

Genotypes of the yeast strains used in the work are listed in

Table 1. Strain 2-D-701 [PSI+][pin–] was obtained as a

result of selection by the corresponding selective markers of

haploid segregants in the progeny of the diploid strain

resulting on crossing of strains 2-OT56 and 9-10-7A-D832.

The plasmid DNA was amplified using the

Escherichia coli DH5α strain. The bacteria were grown on

solid medium LB at 37°C [28].

Plasmids. Plasmids used in the work are described in

Table 2. The pL-GPD-Sup35NM-CFP and pU-GPD-

Sup35NM-YFP plasmids encoding the prion-forming

region of protein Sup35 (Sup35NM) fused with cyan

(CFP) or yellow (YFP) fluorescent protein were prepared

from the plasmid pGPD-PrP23-CFP(LEU2) or from

pGPD-PrP23-YFP(URA3) [32, 33], respectively, as by

substitution at sites BamHI and SacII of the sequence

encoding PrP23-231 with sequence Sup35NM amplified by

polymerase chain reaction (PCR) with primers

Sup35NFBam and Sup35MRSII (Table 3).

The plasmids pU-CUP1-YFP and pL-CUP1-YFP

carry the sequence encoding YFP under control of pro-

moter CUP1. In these plasmids, between the YFP

sequence and promoter, there are restriction sites HindIII

and BamHI allowing insertion of the needed gene frag-

ments flanked by these restriction sites without frame

shift. The pU-CUP1-YFP plasmid was prepared based on

vector pRS316, in which the promoter CUP1 sequence

amplified by PCR with primers Cup1SalIF and

Cup1Hind3R (Table 3), flanked by SalI and HindIII

sites, was initially inserted, and then the YFP sequence

cut from the plasmid pGPD-YFP(URA3) [32] by the

BamHI and SacI sites was inserted. Plasmid pLCup1-

YFP was prepared based on vector pRS315 by inserting

the CUP1-YFP sequence from plasmid pU-CUP1-YFP

by the SalI and SacI sites.

Plasmid pU-CUP1-GLN3-YFP carrying the

chimeric gene GLN3-YFP controlled by an inducible pro-

moter of gene CUP1 was constructed by inserting the PCR-

fragment of GLN3 amplified with primers GLN3HindIIIF

and GLN3YFPBamHIR (Table 3) and the genomic DNA

of strain OT56 as a template into the plasmid pU-CUP1-

YFP by the restriction sites HindIII and BamHI.

The plasmids pU-CUP1-GLN3QN-YFP and pL-

CUP1-GLN3QN-YFP carrying the chimeric gene

encoding the fragment Gln3, a.a. 166-242, fused with

YFP were obtained by inserting the PCR-fragment

GLN3QN amplified with primers GLN3QNHindIIIF

and GLN3QNBamHIR (Table 3) by the sites HindIII

and BamHI into the plasmids pU-CUP1-YFP and pL-

CUP1-YFP, respectively.

Analysis of protein aggregation. Semi-Denaturing

Detergent Agarose Gel Electrophoresis (SDD-AGE) [34,

35] was performed as described in [32] with the following

modifications: we used 1% agarose gel, and samples were

treated with ionic detergent sodium lauryl sarcosinate

(3%) for 10 min at room temperature. The proteins were

transferred onto Immobilon-P PVDF-membrane (GE

Healthcare, USA). Proteins fused with YFP were detect-

ed using monoclonal primary rabbit antibodies against

GFP [E385] (ab32146) (Abcam, Great Britain) and an

Amersham ECL Prime Western Blotting Detection

Reagent kit (GE Healthcare).

Microscopy. Aggregation and colocalization of pro-

teins fused with CFP and YFP were analyzed using a

Leica TCS SP5 laser scanning confocal microscope

(Leica Microsystems, Germany). Fluorescence of pro-

teins fused with CFP was analyzed using a 458-nm argon

laser (signal detection at 461-510 nm), and proteins fused

with YFP were analyzed with a 514-nm argon laser (sig-

nal detection at 518-580 nm); the signal of the DNA-spe-

cific dye DAPI (4′,6-diamidino-2-phenylindole) was

analyzed with a 405-nm argon laser in the UV range

(detection at 425-475 nm). The yeast cells were stained

with DAPI using a VECTASHIELD Antifade Mounting

Medium with DAPI (1.5 µg/ml DAPI) according to the

producer’s protocol (Vector Laboratories, USA). For

microscopic analysis, yeast cultures were grown for 48 h

at 30°C to induce aggregation of the studied proteins.

Statistical analysis. The samples were compared

using the non-parametric Mann–Whitney test using the
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Statistica 6.0 program (StatSoft, USA). To study frequen-

cies of aggregate production by confocal microscopy, five

random visual fields were analyzed for five independent

transformants. The fraction of cells containing aggregates

was determined for each visual field.

To analyze the colocalization of proteins fused with

CFP and YFP, a search was performed for cells with

aggregates formed by both proteins. The colocalization

frequency was determined as the ratio of the number of

cells with co-localizing aggregates to the total number of

cells containing aggregates of both analyzed proteins. The

colocalization frequencies were evaluated for each pair of

proteins analyzed in five independent transformants, and

for each of them at least fifteen cells were analyzed.

Strain

OT56

1-OT56

2-OT56

9-10-7A-D832

2-D-701

Reference

[29]

gift from A. G. Matveenko, St. Petersburg
State University (SPbSU)

gift from A. G. Matveenko (SPbSU)  

gift from S. A. Bondarev (SPbSU)

obtained in this work

Table 1. Strains of S. cerevisiae

Genotype

MATa ade1-14UGA his3 leu2 trp1-289UAG ura3 [PSI+][PIN+]

MATa ade1-14UGA his3 leu2 trp1-289UAG ura3 [psi–][PIN+]

MATa ade1-14UGA his3 leu2 trp1-289UAG ura3 [psi–][pin–]

MATα ade1-14UGA his7-1 leu2 lys2 trp1 ura3 SUP35::TRP1
RNQ1::KanMX [pYCM-U2- SUP35] [PSI+][pin–]

MATα ade1-14UGA trp1 leu2 ura3 lys2 [PSI+][pin–]

Name

pU-CUP1-GLN3-YFP

pU-CUP1-GLN3

pU-CUP1-GLN3QN-YFP

pL-CUP1-GLN3QN-YFP

pCUP1-RNQ1-CFP(LEU2)

pGPD-SUP35NM-CFP

pU-CUP1-YFP

pL-CUP1-YFP

pRS316

Reference

constructed in this work

[30]

constructed in this work

constructed in this work

gift from S. P. Zadorsky (SPbSU)

constructed in this work

constructed in this work

constructed in this work

[31]

Table 2. Plasmids

Marker

URA3

URA3

URA3

LEU2

LEU2

LEU2

URA3

LEU2

URA3

Gene

GLN3-YFP

GLN3

GLN3QN-YFP

GLN3QN-YFP

RNQ1-CFP

SUP35NM-CFP

YFP

YFP

Promoter

CUP1

CUP1

CUP1

CUP1

CUP1

GPD

CUP1

CUP1

Type*

cen

cen

cen

cen

cen

cen

cen

cen

cen

* cen – centromeric plasmid.

Name

GLN3QNHindIIIF 

GLN3QNBamHIR

GLN3HindIIIF

GLN3YFPBamHIR

Cup1SalIF

Cup1Hind3R

Sup35NFBam

Sup35MRSII

Sequence

TAATAAGCTTATGTCTCAATACAACCACGGTTCC

CTGATTGGATCCCTGGATATTACTATTGTTGCT

TAATAAGCTTATGCAAGACGACCCCGAA

AGTAGGATCCTATACCAAATTTTAACCAATCCAAT

GCTGTCGACCTATACGTGCATATGTTCATG

CGTAAGCTTTTGATTGATTGTACAGTTTG

CAGGGATCCATGTCGGATTCAAACCAAGG

TAGCCGCGGATCGTTAACAACTTCGTCATCC

Table 3. Primers
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RESULTS

Overexpression of Gln3 and Gln3-YFP is toxic for

cells, in contrast to overexpression of Gln3QN-YFP. We

found earlier that overexpression of GLN3 had a pleiotrop-

ic phenotypic manifestation strongly inhibiting vegetative

growth on media containing glucose or galactose as carbon

sources and causing nonsense-suppression on the back-

ground of mutant variants of SUP35 [30]. We compared

effects of overexpression of Gln3, Gln3-YFP, and

Gln3QN-YFP in strains 2-OT56 [psi–][pin–] and 1-OT56

[psi–][PIN+]. Inoculums of overnight cultures of strains 1-

OT56 and 2-OT56 transformed with constructed plasmids

pU-CUP1-GLN3-YFP, pU-CUP1-GLN3, pU-CUP1-

GLN3QN-YFP, and pRS316 were matched in optical

density and grown for 48 h in liquid selective medium.

Then a series of successive tenfold dilutions of the cultures

were planted onto solid selective medium supplemented

with 150 µM copper sulfate. Results of the experiment (fig-

ure, panel (a)) showed that overexpression of Gln3QN-

YFP had no influence on vegetative growth, but overex-

pression of the full-length Gln3 on the genetic background

of strain OT56 derivatives led to very strong sublethal inhi-

bition of vegetative growth, which was independent on the

status of [PIN+] prion. In the case of Gln3-YFP, the sub-

lethal effect of overexpression was weaker than the same for

Gln3, but the inhibition of vegetative growth remained

rather strong (figure, panel (a)). Since aggregation of pro-

teins is usually followed by their functional inactivation,

these findings suggested that the full-length Gln3 does not

aggregate when overproduced and retained functional

activity and the ability to inhibit the yeast growth.

Frequency of Gln3QN-YFP aggregation depends on

prions [PIN+] and [PSI+]. To analyze the ability of Gln3

and Gln3QN fused with YFP to produce aggregates in

prion-free yeast strains and in the presence of the prions

[PIN+] and/or [PSI+], we used laser scanning confocal

microscopy. The strains OT56 [PSI+][PIN+], 2-D-701

[PSI+][pin–], 1-OT56 [psi–][PIN+], and 2-OT56

[psi–][pin–] were transformed with plasmids pU-CUP1-

GLN3QN-YFP or pU-CUP1-GLN3-YFP to obtain over-

expression of Gln3QN-YFP and Gln3-YFP, respectively.

Transformants were chosen on selective medium supple-

mented with 150 µM copper sulfate, and protein aggrega-

tion was analyzed by confocal microscopy 48 h later.

The findings revealed that the full-size Gln3 fused with

YFP did not aggregate when overexpressed in all the strains

and was colocalized with the nucleus in the majority of the

cells (figure, panel (b)). However, its Q/N-rich fragment,

a.a. 166-242, fused with the YFP formed clearly distinctive

aggregates in the strains carrying [PSI+] and/or [PIN+] and

also in the strain [psi–][pin–] (figure, panel (c)). These

aggregates had morphology of multiple grains or of a singu-

lar large granule; also, the cell could contain both types of

aggregates. Note that colocalization of Gln3QN-YFP

aggregates with the nucleus was absent (figure, panel (c)).

Thus, Gln3QN-YFP forms aggregates in the pres-

ence of prions [PSI+] and [PIN+] and also in their

absence. However, quantitative analysis (see “Materials

and Methods”) revealed that prions [PSI+] and [PIN+]

significantly influenced frequencies of Gln3QN-YFP

aggregation (figure, panel (d)). So, these frequencies in

strains [psi–][pin–], [PSI+][pin–] and [PSI+][PIN+] were

significantly lower than in strain [psi–][PIN+] (figure,

panel (d)), i.e. prion [PIN+] acted as an inducer of

Gln3QN-YFP aggregation. By contrast, prion [PSI+]

suppressed Gln3QN-YFP aggregation in the [PIN+]

strains, but this prion itself (in strain [PSI+][pin–] as com-

pared with strain [psi–][pin–]) did not suppress Gln3QN-

YFP aggregation (figure, panel (d)). Then we decided to

test whether the Gln3QN-YFP aggregates formed in the

analyzed strains were resistant to ionic detergents, which

characterizes amyloids.

Gln3QN-YFP forms detergent-resistant aggregates

in strains with different [PIN] and [PSI] status. The

detergent-resistance of Gln3QN-YFP aggregates was

analyzed using SDD-AGE. Strains OT56 [PSI+][PIN+],

2-D-701 [PSI+][pin–], 1-OT56 [psi–][PIN+], and 2-OT56

[psi–][pin–] transformed with a plasmid to obtain overpro-

duction of Gln3QN-YFP were grown for 48 h in a liquid

selective medium supplemented with 100 µM copper sul-

fate. Upon isolation of the protein, the lysates were treat-

ed at room temperature with 3% sodium lauryl sarcosi-

nate and separated by electrophoresis in agarose gel. A

boiled sample of strain 1-OT56 [psi–][PIN+] lysate was

used as a negative control.

The samples obtained from all strains under study

were shown to contain Gln3QN-YFP polymers resistant

to treatment with cold sodium lauryl sarcosinate,

although in the [pin–] strains the amount of polymers was

lower (figure, panel (e)), which was in agreement with the

confocal microscopy data. Thus, notwithstanding a sig-

nificant influence of [PIN+] and [PSI+] on the frequency

of formation of Gln3QN-YFP aggregates, this protein

can produce detergent-resistant aggregates also in the

absence of the prions.

Gln3QN-YFP aggregates colocalize with aggregates of

Sup35NM-CFP and Rnq1-CFP. Both [PIN+] and [PSI+]

influenced the frequency of Gln3QN-YFP aggregation;

therefore, it was supposed that it could be a result of

Gln3QN-YFP interaction with structural proteins of

[PIN+] (Rnq1) and [PSI+] (Sup35), and this could be test-

ed by analyzing their colocalization. For the testing, strains

OT56 [PSI+][PIN+], 2-D-701 [PSI+][pin–], 1-OT56

[psi–][PIN+], and 2-OT56 [psi–][pin–] were co-trans-

formed with plasmid pU-CUP1-GLN3QN-YFP and also

with a plasmid for overexpression of the prion-forming

region Sup35 fused with CFP (pGPD-SUP35NM-CFP)

or with a plasmid for overexpression of Rnq1 fused with

CFP (pCUP1-RNQ1-CFP(LEU2)). The transformants

were grown for 48 h on the corresponding selective medi-

um supplemented with 150 µM copper sulfate, and then
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colocalization was analyzed using laser scanning confocal

microscopy. It was found (figure, panels (g) and (h)) that

Gln3QN-YFP aggregates were colocalized with the Rnq1-

CFP aggregates at the nearly 100% frequency in the

[PSI+][PIN+] and [psi–][PIN+] strains (it should be noted

that in the [psi–][pin–] and [PSI+][pin–] strains Rnq1-CFP

formed microscopically detectable aggregates extremely

seldom, and it was impossible to analyze colocalization).

Aggregates of protein Gln3QN-YFP colocalized also

with Sup35NM-CFP aggregates (figure, panel (f)), but

the colocalization frequency in this case was significantly

lower and not higher than 50% (figure, panels (f) and (h)).

This was in agreement with data showing that the [PSI+]

prion was not an inducer, but it influenced the frequency

of Gln3QN-YFP aggregation. In general, although

Gln3QN-YFP formed microscopically and biochemically

detectable aggregates also in strains deprived of [PSI+] and

[PIN+] prions, the results revealed that [PIN+] significant-

ly increased Gln3QN-YFP aggregation, whereas [PSI+],

in contrast, suppressed the effect of [PIN+]. Thus, the effi-

ciency of protein Gln3QN-YFP aggregation is mediated

by the interaction between two different prions.

DISCUSSION

The comparison of effects of the overexpression of

Gln3 and of its Q/N-rich fragment fused with YFP

revealed difference in aggregation, localization, and toxi-

city of these proteins. The full-length protein demon-

strated diffuse distribution in the nucleus (figure, panels

(a) and (b)), whereas its Q/N-rich fragment formed dis-

tinct fluorescent aggregates in the cytoplasm (figure, pan-

els (a) and (c)). The toxicity of the full-length Gln3 over-

a b c

d e

f

g

h

Effects of overexpression of Gln3 and Gln3QN fused with YFP and analysis of colocalization of Gln3QN-YFP aggregates with aggregates of

Sup35 and Rnq1 fused with CFP. a) Analysis of the influence of overexpression of different Gln3 variants on the vegetative growth of yeast.

Series of tenfold dilutions of cultures of strains 2-OT56 [psi–][pin–] and 1-OT56 [psi–][PIN+] overexpressing Gln3, Gln3-YFP, and Gln3QN-

YFP. The strains transformed with pRS316 empty vector were used as a negative control. The cultures were photographed after 48 h of incu-

bation of the cells at 30°C on selective medium supplemented with 150 µM copper sulfate. Laser scanning confocal microscopy of Gln3-YFP

(b) and Gln3QN-YFP (c), as well as frequencies of cells with fluorescent aggregates of Gln3QN-YFP (d) in the yeast strains different in [PSI]

and [PIN] status. Microscopy and counting of frequencies were performed after 48 h of incubation of the cells at 30°C on selective medium

supplemented with 150 µM copper sulfate. The scale bar corresponds to 5 µm. e) Analysis of Gln3QN-YFP aggregation using SDD-AGE with

pretreatment of the samples with 3% sodium lauryl sarcosinate. The boiled sample prepared from strain [psi–][PIN+] overexpressing Gln3QN-

YFP was used as the negative control. f, g) Analysis of Gln3QN-YFP colocalization with Sup35NM-CFP and Rnq1-CFP, respectively, in the

yeast strains different in [PSI] and [PIN] status. h) Frequencies of Gln3QN-YFP colocalization with Sup35NM-CFP and Rnq1-CFP. Laser

scanning confocal microscopy and counting of colocalization frequencies were performed after 48 h of incubation of the cells at 30°C on

selective medium supplemented with 150 µM copper sulfate. The scale bar corresponds to 5 µm
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expression was quite expected, because this protein is a

transcriptional activator of genes regulated by nitrogen

catabolite repression [23-25]. The aggregation of Gln3

could compensate the toxic effect of the increased num-

ber of its molecules, but the full-length Gln3 did not form

aggregates when overexpressed. The absence of toxicity of

overexpression of the Q/N-rich fragment of Gln3 could

be explained either by its inactivation within the aggre-

gates or by localization of the Gln3 domain responsible

for its transcriptional activity beyond the Q/N-rich frag-

ment (data from the Saccharomyces Genome Database,

http://www.yeastgenome.org/). It should be noted that

polyglutamine and polyasparagine tracts have their own

transcriptional activity [36, 37]; therefore, the possibility

of Gln3QN influence on transcription of some genes can-

not be excluded completely.

The aggregation of Gln3QN-YFP depends on prions

[PIN+] and [PSI+]: although this protein formed aggre-

gates with low frequency also in strain [psi–][pin–], the

frequency of formation of its aggregates increased sever-

al-fold on the background of prion [PSI+] (strain

[PSI+][pin–]) and enhanced very strongly in the presence

of [PIN+] (strain [psi–][PIN+]) (figure, panels (c)-(e)). It

is known that pre-existing aggregates of some Q/N-rich

proteins can induce aggregation of other proteins [38-42]

acting as “seeds”. This seems to explain the increased

aggregation of Gln3QN-YFP in the presence of the

[PIN+] and [PSI+] prions whose interaction has been

demonstrated by data on colocalization (figure, panels

(f)-(h)). The frequency of Gln3QN-YFP aggregation in

strain [PSI+][PIN+] is lower than in strain [psi–][PIN+],

because a part of Gln3QN-YFP is likely to bind with

[PSI+] aggregates, which is a weaker inducer of aggrega-

tion than the [PIN+].

The difference in the ability of full-length Gln3 and

of its Q/N-rich fragment to form aggregates when overex-

pressed suggests importance of studies on the influence of

amyloidogenic regions on the aggregation of full-size

proteins. Our data have shown that the ability of the

Q/N-rich region to form aggregates does not definitely

indicate that the full-size protein can produce aggregates.

Unfortunately, at present comparative data on the aggre-

gation of full-size proteins and of their amyloidogenic

fragments are almost absent. To understand the principles

of interactions of amyloidogenic and non-amyloidogenic

regions of the protein molecule, which determine its abil-

ity for aggregation and amyloidogenesis, a large bulk of

experimental data is needed on various proteins, one of

which has been studied in the present work.

In general, the present study has revealed that the

aggregation of Q/N-rich proteins is under the control of

both cis- (interaction of amyloidogenic and non-amy-

loidogenic regions within the same protein molecule, the

level of protein production) and trans-acting factors (such

as prions). Just the balance of these factors determines the

ability of the protein to produce aggregates.
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