
Solutions of colloidal gold have been used for medical

purposes since ancient times [1]. However, only in recent

decades have gold nanoparticles (GNP) started to be

actively used for various diagnostic and therapeutic pur-

poses both in experimental biology and medicine as well as

in practice, due to the emergence of new data on their

unique optical and physicochemical properties [2, 3].

Still, although diagnostic methods using GNP have been

applied in medical practice rather often, only three prepa-

rations (Aurasol®, AurImmune™, and AuraShell®) have

passed all phases of clinical trials, and several preparations

are currently undergoing clinical trials. In the last 10-15

years, GNP have been widely used in different biological

and medical applications including chemical and biologi-

cal sensors, clinical analytics, genomics and immunology,

optical cell, tissue, and organ bioimaging, photodynamic

(PD) and photothermal (PT) therapy of bacterial infec-

tions, cancer cells, and tumors, treatment of various

inflammations, and targeted delivery of drugs, peptides,

DNA, antigens, and other compounds.

Interest in gold and other particles of noble metals is

due to their unique optical properties related to excitation

of localized plasmon resonances in metal nanoparticles

interacting with light [4, 5]. These excitations result in a

whole class of plasmon-enhanced linear properties such

as resonance absorption, scattering, generation of strong

local fields, and surface-enhanced Raman scattering

(SERS). In addition, plasmon excitation results in

enhancement of different nonlinear effects [6].

Various metal nanoparticles used in nanobiotechnol-

ogy have different biomacromolecules (such as recogniz-

ing molecules – antibodies, aptamers, etc.) attached to

their surface via physical adsorption. These nanostructures

are termed bioconjugates or simply conjugates [7], and the

attachment of biomacromolecules to the surface of

nanoparticles is often called “functionalization” [8, 9].

Hence, the probe in the conjugate is used for specific bind-

ing to the target, and the metal core – for visualization of

this interaction using different types of microscopy [10], as

a contrasting agent in optical coherence tomography [11]

and photoacoustics [12], for thermal destruction of cancer

cells and tumors [13, 14], for targeted delivery of mole-

cules attached to the particle [15], and other purposes.
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In addition to GNP conjugates, significant growth in

the number of publication devoted to the synthesis and

application of the multifunctional composite nanoparti-

cles (often simply called nanocomposites, NC) has been

observed in recent years. It is now accepted that multi-

functional NC combining analytical, diagnostic, and

therapeutic capabilities in one structure comprise a new

area in biotechnology that has been termed “theranos-

tics” [16-19]. Theranostics [from Greek thera(peia) –

care, attention, healing, and (diag)nostikos – capable of

recognizing] is a novel approach in medicine that involves

complex solution to therapeutic problems – simultaneous

development of therapeutics and means for early diagnos-

tics of disease. Even though the term “theranostics” was

introduced relatively recently [20, 21], this area is pro-

gressing rapidly as an independent branch of nanoplas-

monics and nanomedicine [22].

In our discussion, we focus on applications for ther-

anostics of multifunctional particles that can be produced

via three different techniques. The first technique

involves the design of composite (or hybrid) nanostruc-

tures with different components intended for either diag-

nostics or therapeutic functions [23]. Most often such

hybrid constructs consist of one or multiple plasmon par-

ticles (which can be themselves composites, such as

SiO2/Au nanoshells or Au-Ag nanocages) embedded into

a dielectric shell (biopolymer, mesoporous silica, etc.),

which is doped with various reporter molecules and mol-

ecules of compounds to be delivered. Another important

group comprises composites of gold and magnetic parti-

cles, which combine plasmon and magnetic properties

supplemented with other modalities using methods for

production of hybrids of the first type. Finally, the most

promising type of NCs are hybrids of gold and carbon

(fullerenes, nanotubes, graphene) nanostructures.

Furthermore, GNPs can be functionalized with var-

ious molecules using new conjugation methods that allow

combination of both diagnostic and therapeutic functions

in one medical treatment [24]. Currently, multifunctional-

ized nanoparticles find promising applications in thera-

nostics [25], which is why we also discuss recent progress

in this area.

Moreover, a third technique for production of multi-

functional nanoparticles involves combination of the first

two approaches, in which the hybrid (composite)

nanoparticles are additionally functionalized with mole-

cules displaying various properties – multifunctionalized

composite nanostructures [26]. A schematic presentation

of applications of multifunctional nanostructures in ther-

anostics is shown in Fig. 1.

The number of publications on multifunctional and

hybrid nanomaterials is growing rapidly in recent years.

That is why, despite the publication of several reviews

devoted to certain aspects of application of multifunc-

tional nanomaterials [27-40], there is an urgent need for

systematic discussion of continuously emerging new data

in this area to help researchers evaluate existing results

and planning new studies. In contrast to reviews pub-

lished earlier, we focus our attention on the discussion of

only multifunctional nanocomposites of the three types

mentioned above based on data reported mainly during

2010-2016 (173 references of 225 total).

COMPOSITE NANOPARTICLES 

Most often the composite GNP used in biomedicine

includes polymeric nanoparticles, nanoparticles of other

metals, and semiconductors in their composition [41-44].

One of the first reported examples of composite nanopar-

ticles is the composite of GNP with polyaminoamide

dendrimer (PAMAM) [45]. These composite GNPs

enhance the efficiency of optical imaging and X-ray

tomography due to better penetration into cells [46].

Introduction of the 198Au isotopes into composites of

PAMAM with GNP increased the efficiency of tumor

radiotherapy [47]. Application of polymeric components

allows novel analytical and therapeutic functions. For

example, GNP composites with polydimethylsiloxane

were used by researchers to design new substrates for

SERS analysis [48]. Composites of GNP with ther-

mosensitive polymers are commonly used in PT therapy

of tumors [49-51]. The conjugate of a GNP+PAMAM

composite with the antitumor preparation doxorubicin

(DOX) was used for combined PT and chemotherapy

[52].

Another example of available NCs are composites of

GNPs with nanoparticles of chitosan – cationic

biodegradable polyaminosaccharide. High antioxidative

potential of such NC exceeding the antioxidative proper-

ties of each component was demonstrated [53]. This NC

was used [54] for electrochemical investigation of cancer

cells, and [55] for electrochemical detection of myoglo-

bin. Gold nanorods (GNR) coated with chitosan doped

with antitumor preparation cisplatin enhanced antitumor

effect of cisplatin and provided additionally an option for

tumor PT therapy [56]. Chitosan-coated GNP with the

encapsulated PD dye indocyanine green were used for

combined PT and PD therapy [57]. GNP coated with

chitosan and polyacrylic acid and doped with cisplatin

were used as a tool for efficient delivery of the drug into

the cell and cell nucleus, as well as a contrast agent for

tumor cell imaging [58].

Other biodegradable polymers have been tested

along with chitosan. For example, GNPs encapsulated

into chondroitin sulfate with insulin were used for peroral

treatment of diabetes in laboratory animals [59]. NC

comprising GNP coated with collagen stimulated differ-

entiation of endothelial cells and facilitated regeneration

of blood vessels [60]. A plasmonic fluorescent NC con-

sisting of a gold nucleus coated with polyacrylamide with

incorporated fluorescein was suggested [61]. The possibil-
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ity of simultaneous use of its plasmonic and fluorescent

properties provides significant advantages.

The “nanobeacon” composite consisting of small (2-

3 nm) GNPs embedded into a lipid or polymer

matrix was suggested for photoacoustic detection of

tumor cells [62]. Interesting results on IR-imaging of

tumor cells were obtained using a NC consisting of 5-nm

GNPs enclosed into a biodegradable polyethylene glycol

(PEG)/polylactone capsule [63]. A similar NC contain-

ing GNRs were used for SERS detection and PT therapy

of cancer cells [64] or targeted delivery of DOX [65]. NCs

were developed for combining ultrasound imaging and PT

therapy comprising gold nanoshells (GNS) encapsulated

into polylactide [66] or PEG/polycaprolactone [67] cap-

sules. Similar nanostructures containing photosensitizer

Ce6 were used for fluorescence detection and combined

PT and PD therapy of tumors [68]. Polymeric biocom-

patible micelles doped with DOX and coated with GNPs

were used for combined PT and chemotherapy, as well as

an efficient contrast agent for computer and photo-

acoustic tomography in vivo [69]. With the same objective

in mind, it was suggested to encapsulate gold nanocages

(GNC) into lipid capsules [70], GNRs into polymero-

somes [71], or GNSs into liposomes [72]. In addition,

vice versa, liposomes containing medicinal preparation

and enclosed into gold shell were used for delivery of

drugs without undesirable leakage of the medicinal ingre-

dient outside of biotarget. These structures were termed

nanocontainers [73].

Multifunctional biodegradable polylactide-glycolide

nanoparticles with encapsulated rhodamine (a drug

model) and coated sequentially by magnetic and gold

shells [74] allowed PT-controlled drug delivery and

enhancing contrast of magnetic resonance. The targeted

drug delivery in combination with PT therapy was real-

ized using polylactide-glycolide nanoparticles with

encapsulated DOX and coated with gold half-shell [75].

Biocompatible GNPs coated with an albumin (bovine

serum albumin, BSA) capsule with antibodies to vascular

endothelial growth factor incorporated via the avidin-

biotin system were used to enhance efficiency of PT ther-

apy [76]. Three types of GNPs were incorporated in the

albumin capsule as reported [77], including the following:

nanospheres, nanorods, and nanoshells. These NC

exhibited pronounced PT properties. All these examples

clearly demonstrate the increase in functionality and, in

many cases, synergism of NCs due to the rational selec-

tion of polymer components.

The design of NCs using a plasmonic nucleus coated

with mesoporous silica shell comprises a separate direc-

tion of research. Interesting data has been published [78].

The authors synthesized a NC consisting of silicon

nanowires coated with gold nanoclusters and efficiently

used it for photothermolysis of circulating tumor cells.

NCs were suggested [79] comprising gold nucleus doped

with antitumor preparation camptothecin. This compos-

ite was used for combined photo- and chemotherapy of

tumors. A similar approach was demonstrated [39, 80,

81], which used GNRs and doxorubicin (Fig. 2).

Constructs consisting of GNPs coated with a meso-

porous silica shell doped with PD dyes can be used for PD

therapy, fluorescence microscopy, and SERS [82-86]. For

example, GNRs and GNCs coated with mesoporous sili-

ca shell doped with PD dye hematoporphyrin were suc-

cessfully used for combined PD and PT inactivation of

antibiotic-resistant Staphylococcus aureus strains [87, 88]

and for therapy of large tumors in rats [89, 90]. GNRs

embedded into a silica shell doped with folate were used

for both computer tomography and photothermolysis in

vivo [91].

A new composite was suggested [92] that was called

gold nanomatryoshka. It comprised GNPs coated with a

silica shell, which, in turn, was coated with a gold shell.

Such nanocomposites demonstrated more clearly pro-

nounced photothermal effect in comparison with the

common GNSs.

Along with “polymeric” and “silica” NCs, compos-

ites consisting of GNPs and magnetic iron oxide

nanoparticles received wide recognition [93]. Such NCs

combine magnetic properties of a ferromagnetic material

and optical properties of plasmon resonant particles,

which make their application in various biomedical stud-

ies very efficient [94]. GNPs coated with a magnetic shell

or nanoparticles with a magnetic core coated with a gold

shell have been reported. Hybrid magnetic gold

nanoshells were used among the first. The SiO2 nuclei

were first coated with magnetite (Fe3O4), and the gold

shell was synthesized over them [95]. The produced NCs

were successfully used for both magnetic resonance

tomography and photothermolysis of tumor cells. With

the same objective, spherical magnetic NPs were synthe-

sized from Fe2O3 or Fe3O4 coated with a gold shell [96,

97], or first with a silica shell followed by a gold shell [98].

Similar NCs coated with PEG [99] (Fig. 3) or

amphiphilic polymers [100] were used as contrast agents

in magnetic resonance and computer tomography, as well

as for magneto-acoustic imaging of tumor cells [101].

Gold-magnetic NCs based on GNRs [102] or GNSs

[103] were suggested for enhancing the photothermolysis

effect.

A NC consisting of GNRs (nucleus) coated with

polypyrrole and a shell from Fe3O4-nanoparticles was

developed [104] for simultaneous application in magnet-

ic resonance and computer tomography and photother-

molysis of tumor cells. For the same purpose, the authors

[105] suggested composite nanostars consisting of a mag-

netic nucleus placed within a gold shell functionalized

with hyaluronic acid, which interacted with CD44 recep-

tors overexpressed on the surface of cancer cells.

GNPs with shells from Fe3O4 were used [106, 107]

for detection of point mutations in DNA molecules using

a piezoelectric microbalance and for determination of C-
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Fig. 1. Schematic presentation of the use of plasmonic nanostructures conjugated with various therapeutic and diagnostic entities [26] (repro-

duced with kind permission of the Royal Society of Chemistry).

Fig. 2. a) Schematic presentation of use in theranostics of GNRs coated with a mesoporous silica shell and functionalized with DOX. Electron

microscope images of GNRs (b) and GNRs coated with SiO2 (c) [39, 81] (reproduced with permission of the Royal Society of Chemistry and

Elsevier Publishers).

a

b c
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reactive protein with a solid-phase immunoassay. GNRs

coated with a magnetic shell were applied during the

design of an immune biosensor for determination of the

level of immunoglobulins in serum [108].

The capabilities of the NC described above can be

extended by functionalization with recognizing mole-

cules. For example, GNRs were coated with a SiO2 layer

with magnetic nanoparticles and conjugated with folic

acid. Folate receptors are known for being overexpressed

on the surface of most cancer cells, so the NC described

above was used for developing a “magnetic trap” and

optoacoustic imaging of circulating tumor cells [109].

Combined effect of chemotherapy and magnetic fields on

a tumor was investigated [110, 111] using an Fe3O4/Au

nanocomposite coated with DOX.

Even more complex NCs have been developed. In

particular, a composite was suggested consisting of a mag-

netic nucleus coated with a silica shell doped with GNRs

[112]. This NC was used for a combination of PT and

chemotherapy of tumors coupled with magnetic reso-

nance tomography and IR thermal imaging. Another no

less multifaceted composite consisted of a magnetic

nucleus (MnFe2O4) coated sequentially with silica and

gold shells [113]. The use of this NC was shown be more

efficient and provide more information during magnetic

resonance testing coupled with therapy.

If a superparamagnetic nucleus is coated successive-

ly with silica and gold shells, the produced nanoparticle

can be suitable for either PT therapy or magnetic reso-

nance imaging of tumors [114]. A NC consisting of small

nanoparticles of iron oxide and lanthanoid nanocrystals

coated with a gold shell was found to be effective for flu-

orescence imaging and magnetically targeted PT of

tumors [115].

It is advisable to have magnetic resonance monitor-

ing during all stages of PT treatment of tumor cells.

Synthesized NCs consisting of GNPs and magnetite

nanoparticles coated with silica shells [116] as well as

iron-gold nanoparticles embedded into a polymeric cap-

sule [117, 118] provide examples of this approach. A NC

consisting of GNRs and Fe3O4 nanoparticles encapsulat-

ed into phospholipid membranes was suggested for the

same purposes [119]. Nanomicelles composed of GNSs,

Fe3O4 nanoparticles, and DOX were used for combining

magnetic resonance imaging, magnetically targeted drug

delivery, and PT therapy [120]. The GNPs and super-

paramagnetic iron nanoparticles coated with polycapro-

lactone capsule were used for computer and magnetic res-

onance tomography in combination with in vivo radio-

therapy of mice with multiple glioblastoma [121].

Magnetic glyconanoparticles coated with gold were

successfully used as a contrast agent simultaneously in the

methods of magnetic resonance tomography, X-ray com-

puter tomography, positron-emission tomography, and

ultrasound imaging [122].

Interesting data were presented in [123]. The authors

designed a NC consisting of a magnetic nucleus and a

gold shell coated with the antibiotic vancomycin. This

Fig. 3. a) Scheme for preparation of Fe3O4 nanoparticles coated with gold shell and PEG. b) Electron microscope image of Fe3O4 nanoparti-

cles and (c) prepared NCs. Scale bar, 20 nm [99] (reproduced with permission of the Korean Chemical Society).

a

cb
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composite was used for magnetic separation of pathogen-

ic bacteria with attached vancomycin followed by PT

destruction of the pathogens. A similar NC conjugated

with S6 aptamer labeled with Cy3 fluorescent dye was

used for targeted diagnostics, isolation, and PT therapy of

tumors [124].

Magnetic nanoparticles encapsulated into a silica

shell coated with PEGylated GNPs were functionalized

by antitumor preparation curcumin and used for either

targeted drug delivery or magnetic resonance imaging of

tumor cells [125].

A very complex NC preparation was suggested in

[126]. It was composed of a polymeric capsule coated

with anticancer preparation paclitaxel that also simulta-

neously contained GNRs, quantum dots, and magnetic

nanoparticles. Using this construct, it became possible to

conduct combined chemo- and PT therapy under the

control of fluorescence microscopy and magnetic reso-

nance tomography.

Other metals, such as palladium, cobalt, gadolinium,

manganese, platinum, hafnium, and titanium or their

oxides are occasionally used in NCs containing GNPs.

Until now, they have been mainly used in various diag-

nostic methods such as SERS, magnetic resonance

tomography, optoacoustic imaging, and positron-emis-

sion tomography. It is our opinion that they can find

application in theranostics as well. GNPs coated with a

palladium shell of different thickness were suggested for

developing an efficient SERS platform [127]. Similar par-

ticles were used during development of an ethanol-specif-

ic amperometric sensor [128]. Ferromagnetic cobalt

nanoparticles coated with gold shell were developed to

increase sensitivity of magnetic resonance tomography

and photoacoustic imaging [129]. GNSs and polymer-

coated gold nanospheres doped with gadolinium [130,

131] or manganese oxide [132] were used for the same

purpose. Composite gold–platinum nanoparticles were

suggested for use in the methods of photoacoustic imag-

ing and positron-emission tomography [133].

NCs with sophisticated composition NaY/GdF4:Yb,

Er, Tm@SiO2–Au@PEG5000 were developed for simulta-

neous use as a contrast agent in magnetic resonance and

computer tomography and fluorescence imaging [134]. A

rather interesting NC was described in [135]. It compris-

es PEG coated quantum dots encapsulated together with

GNPs and antitumor preparation temozolomide into

thermosensitive poly(methyl)methacrylate capsules. This

nanocomplex was effectively used both in confocal

microscopy of tumor cells and for combined chemo- and

PT therapy. Hollow GNPs surrounded by quantum dots

and encapsulated into silica shell have been developed

[136]. This NC was suggested for use in luminescence

detection and PT therapy of tumors.

Moreover, an NC can comprise GNPs of various

sizes and shapes that are embedded into polymer films,

sponges, or gels [137-139]. Such nanocomposites have

been used as supports for SERS, in the composition of

analytical sensors [140, 141], and for PT therapy [142,

143].

NCs based on gold and carbon nanoparticles

(graphene, fullerenes, nanotubes) have been very actively

developed in recent years [144-149]. In addition to catal-

ysis and microelectronics, these NCs have been used in

biomedicine. For example, it was suggested to use hybrid

nanostructures based on carbon nanotubes [150] or

graphene [151] and GNPs for efficient delivery of DOX

and tumor cell imaging (Fig. 4). A composite consisting

of GNPs and carbon nanotubes coated with PEG and

folic acid was used for visualization and PT therapy of

cancer cells in vitro [152]. More sophisticated NCs con-

sisted of GNPs, magnetic nanoparticles, and graphene

and coated with PEG was used [153] for magnetic reso-

nance tomography and PT tumor therapy in vivo. A com-

posite was suggested [154] that consisted of a gold nucle-

us and grapheme shell coated with PD dye. This compos-

ite was used simultaneously for SERS, PT, and PD thera-

py. A NC based of graphene oxide coated with meso-

porous silica shell doped with GNP and folic acid was

used for detection and selective killing of tumor cells

[155].

MULTIFUNCTIONALIZED GNPs

Multifunctionalized GNPs were first used to

increase the efficiency of targeted drug delivery to tumor

cells and tissues. Double functionalization of nanoparti-

cles with medicinal preparation and recognizing mole-

cules were used most often to design such GNPs. The

double conjugation of GNPs with antitumor preparation

gemcitabine and antibodies to vascular endothelial

growth factor, whose receptors are overexpressed on the

surface of cancer cells, provides an example of such mul-

tifunctional constructs [156]. The possibility of function-

alizing GNPs simultaneously with anticancer drug pacli-

taxel and tumor necrosis factor was also reported [157].

This double conjugate demonstrated high efficiency both

in vitro and in vivo. Good efficiency was also revealed in

the case of double conjugation of GNPs with paclitaxel

and biotin [158]. Furthermore, a GNP conjugate concur-

rently with antitumor preparation cetuximab and anti-

bodies to folate receptors of tumor cells [159] and a GNP

conjugate with folate and cisplatin [160] were suggested.

Double functionalization of GNPs with antitumor and

cell penetrating peptides, which facilitate more efficient

delivery of the intended compound to the target, also

shows considerable promise [161-163].

Considering that the tyrosine kinase receptors are

overexpressed on the surface of tumor cells, hollow GNPs

conjugated simultaneously with tyrosine kinase and DOX

were synthesized [164]. This conjugate exhibited high

efficacy during PT and chemotherapy, in part due to the
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fact that hollow GNPs absorb emission in the near IR

range 50-fold more efficiently than solid ones.

Conjugates of GNPs with DOX and folate were suggested

for tumor treatment under monitoring by multiphoton

spectroscopy [165]. Conjugates of DNA-coated [166]

and BSA-coated GNPs [167] with DOX were also syn-

thesized, which were used for combined chemo- and PT

therapy. To increase the efficiency of intracellular pene-

tration, a triple conjugate of GNPs with DNA, folic acid,

and DOX was used [168].

A conjugate of GNPs with aptamers to prostate-spe-

cific antigen and DOX was suggested for simultaneous

diagnostics with computer tomography and prostate can-

cer therapy [169]. A GNP conjugate with DOX and cell

penetrating peptide A54 was developed for combined

chemo- and PT therapy [170]. Conjugates of GNPs with

DOX [171] or trastuzumab [172] together with cell-pene-

trating peptide cRGD were synthesized for use of GNPs

simultaneously for therapy and positron-emission tomo-

graphy. Moreover, the issue of blocking of the NC surface

to prevent nonspecific adsorption of serum proteins on

the particle (protein corona effect) was considered [172].

Formation of protein corona can affect the functional

properties of NCs. It was suggested to protect NCs from

nonspecific adsorption using such compounds as dextran,

polyoxazoline, polyglycerol, and PEG (most popular). In

particular, it was shown using X-ray photoelectron spec-

troscopy that formation of the protein corona was

reduced significantly on coating the surface of nanoparti-

cles with PEG.

A conjugate of GNRs with indocyanine green and

antibodies to epidermal growth factor receptor was syn-

thesized for simultaneous application in PT and PD ther-

apy and monitoring of tumor cells with IR imaging [173].

A conjugate of GNPs with tumor-specific antibodies and

the PD dye phthalocyanine was described, which was

used for effective PD therapy [174].

GNPs coated simultaneously with the cell-penetrat-

ing peptide RGD and heparin labeled with fluorochrome

efficiently penetrated metastasizing cells allowing their

visualization by fluorescence microscopy and caused cell

death due to apoptotic effect of heparin [175]. The

gold–silver nanorods conjugated simultaneously with

rhodamine 6G and a phage hybrid protein specific to colo-

rectal cancer cells were used for fluorescence imaging and

PT therapy of tumor cells [176].

A multifunctional conjugate based on GNSt was

developed for application in combined PT, PD, and

chemotherapy of tumors and IR imaging [177]. The

GNSt were functionalized with three ligands: cell pene-

trating peptide, DOX, and indocyanine green. The effi-

ciency of application of GNRs also labeled with three

types of probes including: (i) scFv antibody fragment to

epidermal growth factor receptor; (ii) amino-terminal

fragment of the peptide recognizing the urokinase plas-

minogen activator; and (iii) cyclic RGD-peptide recog-

nizing ανβ3 integrin receptor [178] was investigated. One

important result of this study was that the total efficiency

of particle delivery into cells depended only slightly on

the availability of probe molecules, but it affected strong-

ly the distribution of particles in the intercellular space.

A NC consisting of GNPs coated with conjugate of

BSA with rifampicin and with cell-penetrating cRGD

peptide was synthesized with the objectives to increase

efficiency of the PT tumor therapy and to enhance intra-

cellular penetration of the drug [179]. The multifunction-

alized GNPs conjugated sequentially with recognizing

antibodies and cell-penetrating peptides and coated with

PEG demonstrated increased circulation time of the

nanoparticles in the bloodstream [180], which resulted in

increased accumulation of the composite into cells.

A rather sophisticated multifunctionalized construct

was reported [181]. GNPs were sequentially functional-

ized with oligonucleotides, chelated 64Cu, and fluo-

rophore Cy5. This allowed using the nanoconjugates for

positron-emission tomography and fluorescence imaging

of tumor cells.

Multifunctionalized GNPs conjugated with fluores-

cein isothiocyanate, boronophenylalanine, and folic acid

were developed for simultaneous application in boron

neutron capture therapy and fluorescence tumor biode-

tection [182]. These multiconjugates demonstrated high

therapeutic potential against several tumor cell lines.

Conjugates of GNPs with DOX and CpG immunomodu-

lator were synthesized for use in combination immuno-,

chemo-, and PT therapy [183]. These conjugates exhibit-

ed high efficiency in in vitro experiments (higher degree

of inhibition of tumor cell growth in comparison with the

use of non-conjugated DOX) and in vivo (triple combina-

tion of chemotherapy, thermotherapy, and immunothera-

py normalized the volume of the experimental tumor in

mice within one day).

In addition to targeted delivery of drugs, multifunc-

tional GNPs are often used for transport of genetic mate-

rial into the cell nuclei. A double conjugate of GNPs with

siRNA and folic acid as a target molecule was used for

efficient intracellular delivery of siRNA [184]. Cell-pen-

etrating peptides have also been used for this purpose

[185]. To protect siRNA from intracellular endonucleas-

es and to enhance its cell penetration, it was suggested to

coat the GNS+siRNA conjugate additionally with TAT

lipid [186]. The nanoparticles were conjugated with

siRNA labeled with Gd+ to enable monitoring of intra-

cellular and intra-tissue penetration of the GNPs by the

magnetic resonance technique [187]. Simultaneous

delivery to the tumor of siRNA and DOX conjugated with

GNRs coated with folate was suggested [188] for photo-

acoustic imaging of tumor cells and enhancing efficiency

of chemotherapy. In all the above-mentioned examples,

the target compounds (drugs, siRNA) served as the main

therapeutic agent, the auxiliary compounds (antibodies,

aptamers, cell penetrating peptides) served as means for
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targeted delivery of the NC, while the GNPs themselves

and dyes served for diagnostic purposes as well as for PT

and PD therapy.

In addition to targeted delivery of drugs and genetic

material, multifunctionalized GNPs have been used for

developing vaccines. For example, gold glyconanoparti-

cles were synthesized that contained simultaneously two

tumor antigens and a T-helper activating peptide in the

hydrocarbon shell [189]. This glycoconjugate was sug-

gested for creating an anticancer vaccine. A similar

approach was used for producing corpuscular immuno-

gens to other types of tumors [190] and to Streptococcus

pneumoniae [191], as well as for producing a prototype

drug for treating HIV infection [192]. Furthermore, gold

glyconanoparticles intended for various biomedical appli-

cations can have drugs, siRNA, fluorophores, and other

ligands in their composition [193, 194].

Moreover, multifunctionalized GNPs were devel-

oped specifically for application in computer tomography

[195], SERS [196, 197] (Fig. 5), photoacoustic imaging

[198], and solid-phase immunoassay [199].

MULTIFUNCTIONALIZED COMPOSITE GNPs

In this section, we will consider the most (in our

opinion) interesting and promising nanoconstructs –

composite nanoparticles conjugated with several func-

tional probes (multifunctionalized composite GNPs).

There are still only few data available on such nanostruc-

tures, but the possibilities opened by application of such

structures in theranostics are impressive.

One of the first successful applications of multifunc-

tional composite nanoparticles was published [200]. The

authors synthesized two-segment gold–nickel nanorods.

Plasmid DNA was attached to the nickel segment of the

Fig. 4. Scheme of preparation of carbon nanotubes coated with GNPs [149] (reproduced with permission of the American Chemical Society).

Fig. 5. Schematic presentation of SERS-nanoantenna: 90-nm

GNP coated sequentially with SERS-reporter, PEG, and cetux-

imab [197] (reproduced with permission of Elsevier Publisher).

90-nm

GNP

Oxidative

treatment
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rod, and transferrin labeled with fluorescent dye rhod-

amine − to the gold segment. This nanocomposite was

used for efficient transfection of plasmid DNA into

HEK293 cells; furthermore, the transfection process was

facilitated by the availability of transferrin, and monitor-

ing of the process could be conducted using confocal

microscopy identifying rhodamine penetrated into the

cell. Moreover, it was possible to control the process of

transfection using magnetic field due to the magnetic

properties of the nickel segment. This NC provides signif-

icant promise for production of transgenes, gene therapy,

and DNA vaccination.

A new multifunctional NC was suggested by the

authors [201, 202]. It comprises GNPs stabilized with

PAMAM dendrimer, which were preliminarily conjugat-

ed with folic acid and fluorescein isothiocyanate. This

NC was used for combined detection of tumor cells by

flow cytometry, confocal microscopy, inductively coupled

plasma mass spectrometry, and computer tomography.

Composite nanomicelles consisting of GNPs coated

with amphiphilic block-copolymer conjugated with folic

acid and DOX were used for efficient targeted delivery of

DOX into tumor cells [203]. GNPs coated with silica

shell doped with silver nanoparticles, aptamer, and PD

dye were successfully used for targeted delivery of

nanoparticles into cancer cells followed by combined PD

and PT therapy [204]. NC that incorporated GNPs and

iron oxide nanoparticles coated with block copolymer

doped with paclitaxel was used for combined chemo- and

PT therapy and magnetic resonance imaging of tumor

cells [205].

The group of N. Halas at Rice University contributed

significantly to the development of multifunctionalized

GNPs and their application in theranostics. In 2010, they

designed a sophisticated NC consisting of gold shells on

silicon dioxide nuclei coated with silica epilayer with

incorporated magnetic nanoparticles and conjugated with

antitumor antibodies and indocyanine green [206]. Thus,

the nanocomposite displayed four modalities: plasmon

resonance features of gold, magnetic properties of Fe3O4

nanoparticles, recognizing functions of antibodies, and

PD capabilities of the dye. That is why the suggested com-

posite can be used either for diagnostics (fluorescent

methods, magnetic resonance tomography) or for tumor

therapy (PT and PD). In the same year, a similar NC (with

antibodies conjugated via the avidin–biotin system) was

tested in vivo in mice with transplanted breast tumor [207].

The efficiency of diagnostics by IR fluorescence and mag-

netic resonance tomography was demonstrated.

Biodistribution of nanoparticles in organs and systems was

determined during 72 h after injection, selective accumu-

lation of GNPs in tumor was demonstrated, and effective

PT therapy was conducted. In the next study, the efficacy

of the conjugate for ovarian cancer was shown [208].

Another multifunctional composite was termed

“nanorattle” [209]. It consisted of several silica spheres

loaded with the antitumor preparation docetaxel

enclosed into one common gold shell coated with PEG.

The nanocomplex offered significant promise for com-

bined chemo- and PT therapy and exhibited high bio-

compatibility. The authors tested the “magic bullet” in

vitro and in vivo in a hepatocellular carcinoma model

and demonstrated pronounced synergetic effect of the

NC.

Another “nanorattle” was reported [210]. It com-

prised GNCs loaded with Raman reporter p-aminothio-

phenol and coated with hollow silica shell functionalized

simultaneously with cell-penetrating peptide and DOX

(Fig. 6). The nanocomposite was used for SERS imaging,

targeted drug delivery, and PT therapy.

Another version of “nanorattle” has been described

[211]. GNPs with diameter of ∼7 nm were placed into a

hollow silica shell with gold nanoclusters (gold quantum

dots) with diameter <2 nm incorporated into it that dis-

played magnetic and fluorescent properties. The overall

size of the “nanorattle” was ∼150 nm. The NC was used

for delivery of DOX conjugated with the nanocomposite

surface into tumor cells, PT therapy, as well as for fluo-

rescence, photoacoustic, and magnetic resonance imag-

ing.

In general, it must be mentioned that along with the

GNPs, gold nanoclusters are finding ever-increasing use

in theranostics [212, 213]. In particular, they have been

used in composition of multifunctional NCs based on

polymer micelles conjugated with transferrin, which were

developed for targeted delivery of docetaxel into cells and

tumor bioimaging [214].

Development of a unique NC with five functional

modalities was reported [215]. The NC comprised

PEGylated GNSt conjugated with p-mercaptobenzoic

acid (SERS reporter) encapsulated into silica shell linked

to gadolinium complex. Thus, the nanocomplex could be

applied in all methods such as (i) SERS, (ii) magnetic

resonance and (iii) computed tomography, (iv) two-pho-

ton luminescence and (v) PT therapy (Fig. 7).

Another interesting example of multifunctionalized

composite GNPs – gold nanoprisms enclosed in

biodegradable gelatin capsules doped with paclitaxel and

folic acid linked to the surface of the capsules [216].

Paclitaxel penetrated effectively into tumor cells, causing

their death. A no less interesting NC consisted of

biodegradable polylactide-co-glycolide nanoparticles

with encapsulated DOX [217]. The surface of the particles

was coated with gold shell and functionalized with human

serum albumin conjugated with indocyanine green and

folic acid. The virus-like nanoplatform allowed conduct-

ing fluorescence microscopy of tumor cells and fluores-

cence imaging in vivo, as well as combined targeted

chemo- and PT therapy. The NC demonstrated high syn-

ergistic effect in in vivo experiments with mice with trans-

planted breast carcinoma.
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CONCLUSION

Due to development and improvement of technolo-

gies for synthesis of GNPs in the last decade, researchers

are now provided with a great diversity of available parti-

cles with required parameters in size, shape, structure,

and optical properties. Moreover, the task was recently set

for primary modeling of nanoparticles possessing

required properties that would be followed by develop-

ment of a synthesis technique for the modeled nanostruc-

ture. From the point of view of medical applications, the

development of efficient technologies for functionaliza-

tion of GNPs with different classes of molecules is essen-

tial as this could ensure stability of nanoparticles under in

Fig. 6. Scheme of Au-SiO2 nanorattle synthesis that is coated with TAT peptide and doped with DOX. Adapted from [210].

Fig. 7. Schematic presentation of NC with five functional modalities [215] (reproduced with permission of the Royal Society of Chemistry

Publisher).

GNC

Tat peptide-coated DOX-loaded

Au-SiO2 nanorattle
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vivo conditions, homing interaction with biological tar-

gets, and, consequently, targeted delivery of medicinal

preparations or diagnostics markers.

It is now generally accepted that GNP conjugates are

perfect labels for bioimaging by different technologies

including optical imaging, photoacoustic imaging,

SERS, computer tomography, etc. In addition to pub-

lished examples of clinical diagnostics of cancer,

Alzheimer’s disease, HIV, hepatitis, tuberculosis, dia-

betes, and others, new diagnostic applications for GNPs

should be expected.

The development of SERS platforms using plasmonic

nanoparticles and NCs is one of the hot areas in analytics

and biomedicine. It is our opinion that platforms based on

self-assembly of nanoparticles [218, 219] or chemical syn-

thesis of nano-islands [220] offer the most promise. Such

platforms have low cost; demonstrate high signal amplifica-

tion with high signal reproducibility in different spots of the

same platform and in platforms synthesized independently.

In most cases, the use of silver or gold/silver nanostructures

provides advantage in terms of sensitivity of the analyte

determination. The SERS platforms produced by electron

beam nanolithography exhibit the highest reproducibility

of controlled properties [221]. However, this technology is

quite expensive, and signal amplification is often even lower

than that observed with self-assembled or island-type struc-

tures. A new type of composite particles with Raman mol-

ecules inside the plasmonic nanostructure offers promise

for diagnostics [222-224]. The main advantage of these

particles is high signal amplification (one order of magni-

tude higher than for molecules on the surface of particles)

and independence of stable signal on environmental condi-

tions such as those outside and inside the cell.

Targeted delivery of DNA, antigens, and medicinal

preparations using nanoparticles appears as the most

promising approach in biomedicine. Functionalization of

GNPs with molecular vectors to cancer cell receptors

increases significantly the delivery of nanoparticles to cell

targets. Respectively, loading of GNPs with anticancer

preparation will enhance its targeted delivery. In addition

to chemotherapeutic actions, these conjugates can be

used for thermal therapy of tumors.

Analysis of literature data shows that the develop-

ment of a universal support for all types of delivered com-

pounds and biotargets is unlikely. It is more likely and

seems more appropriate to design a support that has been

optimized for both loading with a certain compound and

efficiency of delivery to a certain target. In particular, the

stability of the conjugate support in the bloodstream and

weak interaction with nontarget and immune cells must be

accompanied by effective penetration into the target cells.

It is quite possible that these properties can be generated

using not statically, but dynamically controlled nanosys-

tems, whose functions can be switched via a particular sig-

nal (optical, magnetic, acoustic, etc.). In this connection,

high hopes are associated with fast progress in the devel-

opment of technologies for synthesis of multifunctional

NCs combining the controlled physical properties (mag-

netic, optical, photodynamic, radioactive, etc.) with

improved technologies of molecular surface targeting.

Precisely these constructs can ensure targeted delivery of

nanoparticles for both visualization and targeted therapy.

Multifunctional nanoparticles allow simultaneous delivery

of several target agents, which results in effective com-

bined therapeutic regimes for cancer treatment.

Plasmonic PT laser cancer therapy with GNPs first

reported in 2003 is now undergoing clinical trials. The

modern state of laboratory studies and potential for their

transfer to clinical practice was reviewed recently [225].

The available experimental data indicate that further

progress in the development of nano-oncology should be

expected in combination of various technologies includ-

ing photodynamics, chemotherapy, gene therapy, and

other approaches of this type. The delivery of genetic

material that can suppress the aggressive growth of cancer

cells and their metastasizing in combination with other

nanobiotechnologies and surgical approaches could be

the most efficient direction. Furthermore, the potential

for the use of multifunctional composites as a platform for

nanovaccine development is expanding.

In this review, we considered different variants of

application of multifunctional GNPs. It is exactly the

availability of multiple functions provided via different

component composition of nanoparticles (NCs) or via

different functional groups on their surface (multifunc-

tionalized GNPs), or via a combination of these proper-

ties (multifunctionalized NCs) that explains active appli-

cation of this type of nanoparticles in theranostics.

Multifunctionality ensures both diagnostic and therapeu-

tic (chemical and physical action) possibilities of applica-

tion of these nanocomplexes. Moreover, very often multi-

functionality is manifested through synergetic effect of

GNP action either in vitro or in vivo. In our opinion mul-

tifunctional GNPs have great therapeutic and diagnostic

potential in various medical studies, and, most impor-

tantly, in practical personalized medicine.

Progress in genomics and proteomics has resulted in

the growth of information related to the molecular bio-

markers of different types of cancer. This information will

help in development of novel multifunctional GNPs that

can identify tumor target cells and exert very precise and

specific action on them. Novel, more complex functions

of “smart” multimodal GNPs will ensure early diagnostic

of diseases and monitoring of treatment of patients in real

time.
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