
Iron is an omnipresent element on earth, and it is the

second most abundant metal [1]. Iron participates in a

wide range of biological cofactors and prosthetic groups.

Iron can be coordinated to amino acid side chains direct-

ly (e.g. transferrins), or via porphyrin rings (e.g. hemo-

globins) or sulfur atoms (such as in iron-sulfur proteins).

In this review, we focus on iron-sulfur (Fe-S) proteins in

mitochondrial metabolism.

The presence of Fe-S clusters (ISCs) in proteins

emerged as life on earth began. It is suggested that ISCs

were the first catalysts and enzyme cofactors for many

biochemical reactions in the anaerobic world [2]. Their

versatility and robustness can be attributed to the extraor-

dinary properties of iron and sulfur atoms because both

can readily donate or accept electrons [3-6]. There are

many types of ISCs ranging from a single iron atom coor-

dinated to four cysteine sulfhydryl groups [1Fe-0S], such

as in rubredoxin [7-9], to more complex types. ISCs such

as [2Fe-2S], [3Fe-4S], and [4Fe-4S] predominate (Fig.

1). Other complex clusters also exist, such as [7Fe-8S],

[8Fe-7S], or [8Fe-8S] in molybdenum-iron (MoFe) pro-

teins [10]. In most Fe-S proteins, the cluster is coordinat-

ed to four sulfhydryl groups in cysteines. Rieske Fe-S pro-

teins use two histidines and two cysteines instead of four

cysteines for coordination [11, 12]. Other permutations

of coordinating amino acids occur in some Fe-S proteins

[13], and in these cases, the chemical nature of the struc-

ture is altered. Nonetheless, the basic chemical reactions

in which clusters are involved remain the same.

ISCs undergo a variety of reactions and can be con-

verted from one type to another within the course of a

reaction. In Fe-S proteins, the iron atom is the donor and

acceptor of electrons and it alternates between the oxi-

dized (Fe3+) and reduced (Fe2+) states by the addition or

loss of a single electron, generally without the involve-

ment of protons [14]. In vivo, ISCs are incorporated into

proteins by a complex pathway requiring numerous

accessory proteins [15-17]. The loss or malfunction of

these can lead to a wide-range of diseases (at least ten

known human genetic diseases) and may ultimately cause

death [18-21]. Here, we discuss the various facets of ISC

biochemistry in mitochondrial metabolism.
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STRUCTURE AND ASSEMBLY

OF MITOCHONDRIAL Fe-S CLUSTERS

Mitochondria share many ancestral pathways with

bacteria. Among them is the Iron Sulfur Cluster (ISC)

pathway of Fe-S biosynthesis [22]. Eukaryotes developed

a complementary system termed the Cytosolic Iron-sul-

fur protein Assembly (CIA) pathway that inserts Fe-S

clusters into a variety of proteins destined for the cyto-

plasm or nucleus [16, 23].

Structure and Biochemistry of Fe-S Proteins

ISCs occur mainly in a rhombic arrangement [2Fe-

2S] or a cubane form [4Fe-4S]. The [2Fe-2S] rhombic

cluster consists of two bridging sulfide ions coordinating

two iron ions to four cysteines (or two cysteines and two

histidines) in a protein (Fig. 1b). Recent reports indicate

an unusual occurrence involving three cysteine residues

and one histidine in the coordination of a [2Fe-2S] clus-

ter [24]. The [2Fe-2S] clusters occur in two oxidation

states, oxidized (both irons are +3) and reduced (one iron

is +2 and one is +3) [25]. In the cubane structure, four

iron atoms and four inorganic sulfur atoms are coordinat-

ed to four sulfhydryl side chains of cysteines (Fig. 1d)

[26]. Clusters of this kind are subdivided into two cate-

gories, low- and high-potential types. Low-potential

[4Fe-4S] clusters switch between oxidized and reduced

states of [2Fe3+, 2Fe2+] and [Fe3+, 3Fe2+], respectively.

The high-potential subgroup shuttles between an oxidized

state of [3Fe3+, Fe2+] and a reduced [2Fe3+, 2Fe2+] [5, 27].

ISCs serve a wide-range of functions (Fig. 2), and

their roles can be categorized according to the chemistry

involved in their reactions. Oxidation-reduction reactions

and electron transfer represent the main function of ISCs

[28] and they serve a major role in cellular redox regula-

tion and homeostasis. Because they have the ability to

reversibly bind iron and sulfur, ISCs can also be used for

Fe and S storage in the activation of specific enzymes

and/or substrates (e.g. the aconitase reaction in the citric

acid cycle [10, 19]). Interestingly, ISCs are also involved

Fig. 1. Fe-S centers that are common in proteins: a) [1Fe-0S]; b) [2Fe-2S]; c) [3Fe-4S]; d) [4Fe-4S].

a                                                         b

c                                                         d
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both directly and indirectly in regulation of gene expres-

sion [29, 30] and DNA replication [31, 32] and repair

[12, 33]. Moreover, they can also enhance protein stabil-

ity in vitro and in vivo [32, 34, 35].

Assembly (the ISC Machinery)

We consider here only the ISC machinery in mito-

chondria. Paul and Lill provide a review of the biogenesis

of cytosolic and nuclear Fe-S proteins via the CIA path-

way [23]. The Fe-S biogenesis pathway was first elucidat-

ed in bacteria and has been shown to be highly conserved

in all species including mammals [19, 36]. Due to the

complexity of and requirements for Fe-S proteins in var-

ious cellular compartments in eukaryotes, the pathway is

more elaborate and requires export proteins for the

crosstalk between compartments. In yeast, assembly of

ISCs occurs mainly in mitochondria, whereas in mam-

malian cells it also occurs in the cytoplasm and nucleus

[37]. Regardless of the organism, the ISC system requires

a source of electrons, iron, and sulfur atoms from cys-

teine.

In mammalian mitochondria, Fe-S biogenesis (Fig.

3a) begins with dimerization of a cysteine desulfurase

(NFS1) to form a complex with two molecules of the

scaffolding protein ISCU at each end of the dimer [38].

NFS1 is stable only when bound to partner protein ISD11

[7, 39], and it is bound in the mitochondrial matrix, cyto-

plasm, and nucleus [8]. Both ISCU subunits bind inor-

ganic sulfur that is provided by NFS1 in the conversion of

two cysteine residues into alanine. The sulfur is then

coordinated with iron that is already bound covalently by

ISCU [22, 40, 41] via linkage to cysteine residues. The

source of iron is likely from the protein frataxin [13].

Frataxin has been shown to catalyze the sulfur transfer

step that is rate limiting in the synthesis of [2Fe-2S] clus-

ters [42, 43]. Frataxin binds in a groove between NFS1

and ISCU [19] in the preformed complex rather than to

its individual components [44], and it induces a confor-

mational change that activates the complex allosterically

by accelerating the sulfur transfer reaction [14, 45, 46].

An electron source is needed to finalize the configuration

of the nascent Fe-S structure. Some evidence indicates

that ferredoxin can donate the required electrons [47]. In

vitro, ferredoxin provides the electrons required to couple

two [2Fe-2S] clusters to form a [4Fe-4S] on the ISCU

scaffold protein [48]. Defects in any part of this pathway

can lead to genetic diseases such as leukodystrophy and

neuroregression [49], thus highlighting the important role

ISCs play in mitochondrial and cellular health.

After ISC incorporation on the core complex, it can

then be transferred to target proteins using co-chaperones

such as mammalian mitochondrial HSC20 [50] (or bac-

terial HscB [51]). HSC20 interacts with a protein (con-

taining LYR motif) that is a target ISC protein or an

assembly protein for the ISC protein, forming a complex

that consists of chaperone–co-chaperone–ISCU–apo-

ISC protein (HSPA9–HSC20– ISCU–apo-ISC protein)

[52]. Many Fe-S proteins and Fe-S protein assembly sub-

units in respiratory complexes II and III (cII and cIII)

acquire ISCs in this manner [52, 53]. Alternatively, some

of the ISCs in complex I (cI) are delivered via a different

route. The mitochondrial P-loop NTPase Ind1 (an ISC

assembly protein known to be required specifically for

NADH dehydrogenase) transfers ISCs to apoproteins at

the terminal stage in the ISC assembly process in mito-

chondria [54-56]. In humans, it is also called NUBPL

(nucleotide-binding protein-like) [55]. Ind1 binds tran-

siently a [4Fe-4S] cluster and transfers it to cI [54, 55, 57]

(Fig. 3b). Interestingly, Ind1 shows strong specificity for

cI proteins in yeasts and humans [54, 55]. The Ind1 dele-

tion mutant in the yeast Yarrowia lipolytica shows only

∼30% residual activity and ∼20% of the relative abun-

dance of cI compared to wild type, suggesting that the

decreased activity is caused by a decrease in the cI level

[54]. Likewise, a knockdown mutant of Ind1 in human

HeLa cells showed a 3- to 4-fold decrease in cI activity

and reduced cI assembly [55]. However, no such reduc-

tion in activity or assembly was detected in other mito-

chondrial Fe-S proteins such as aconitase, cII or cIII, all

of which contain ISCs as cofactors [54, 55]. Despite its

strong specificity for cI, the 30% residual activity of cI in

the Ind1 deletion mutant suggests the possibility of

involvement of other ISC delivery proteins for insertion

of ISC to cI in addition to Ind1.

Ind1 may also serve other roles in mitochondria. In

Drosophila melanogaster mitochondria, a physical inter-

action between a homolog of Ind1 (CG3262) and the

Fig. 2. Functional versatility of Fe-S clusters. ISCs in proteins

serve multifaceted and unrelated functions. They are involved in

redox sensing, DNA metabolism and gene activation, iron and sul-

fur storage, protein stability, and environmental sensing.
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mitochondrial DNA (mtDNA) replicative helicase was

found by high-throughput co-affinity purification cou-

pled with mass spectrometry [58], suggesting an expand-

ed role for Drosophila Ind1 in mitochondrial DNA repli-

cation. This notion is supported by our recent discovery

that the Drosophila mtDNA replicative helicase contains

an ISC [34] (see section “Helicases”).

Fe-S CLUSTERS IN MITOCHONDRIAL

RESPIRATION

Mitochondrial respiration is the main energy-yield-

ing mechanism in aerobic eukaryotes. In oxidative phos-

phorylation, electrons donated by NADH and FADH2

are transferred to the last electron acceptor, oxygen, pass-

ing through redox centers in four protein complexes in

the mitochondrial inner membrane. Many respiratory

complex proteins coordinate ISCs that are essential for

their activity, and mutations in genes encoding proteins

required for biogenesis of Fe-S proteins result in reduced

activity of the respiratory chain [59, 60]. Electrons can be

transferred directly by the reduction of Fe3+ to Fe2+ in

cytochromes and Fe-S proteins. Unlike other redox cen-

ters like flavins, quinones, and other metals, both hemes

and ISCs are likely to form a chain [61]. Respiratory cI

(NADH:ubiquinone oxidoreductase) and cII (succi-

nate:ubiquinone oxidoreductase) contain multiple ISCs

Fig. 3. Fe-S proteins are synthesized on the mitochondrial ISC machinery. a) The cysteine desulfurase protein (NFS1) in complex with the

stabilizing protein ISC11 dimerizes, allowing two molecules of ISCU to bind. The binding of ISCU to both ends of the dimer creates two

grooves where two frataxin molecules bind. The functional cysteine desulfurase complex extracts sulfur from cysteine, converting it to ala-

nine. Frataxin supplies the iron, and ferredoxin donates electrons to form the ISC on ISCU. b) Ind1 is an ISC-targeting factor that has a role

in the assembly of the N modules in complex I (cI) in mitochondria. It may acquire the ISC directly from ISCU, or more likely, by an indi-

rect route involving other intermediate scaffolds. Ind1 may be targeted to the mitochondrial membrane either before or after ISC insertion,

where it is involved in the transfer of [4Fe-4S] clusters to cI, either directly or again perhaps via other intermediate partners (dashed arrows

and question marks) [54, 151].

a

b
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and transfer electrons one at a time to ubiquinone (Q) by

establishing electron tunneling chains. Complex III con-

tains only a single Fe-S protein.

Complex I (NADH:Ubiquinone Oxidoreductase)

Electrons from NADH enter the respiratory chain

through the cI gateway. Complex I is a multisubunit mega

protein carrying eight ISCs in five of its fourteen core

subunits. The nomenclature of the eight ISCs is based on

EPR signals [62, 63]: two (N1a and N1b) are [2Fe-2S]

clusters, and six are [4Fe-4S] clusters (N2, N3, N4, N5,

N6a, and N6b). Some prokaryotes including Thermus

thermophilus and Escherichia coli contain an additional

[4Fe-4S] cluster N7 in a subunit that is thought to play a

role in assembly and/or structural stability rather than

electron transfer due to its distal position from the main

redox chain [64]. All the ISCs locate in the peripheral

arm of cI, which has a hydrophilic domain and protrudes

into the matrix. Ubiquinone positioned at the interface

between the peripheral arm and the membrane arm [65,

66] is reduced by the N2 cluster, the terminal cluster in

the cI redox chain. Complex I transfers two electrons

from NADH to ubiquinone (Q) in an exergonic process

that is tightly coupled to the endergonic translocation of

four protons across the membrane into the acidic inter-

membrane space [67]. The ISCs in cI are described

below; individual proteins are indicated by their

human/bovine designations.

N3: NDUFV1/51 kDa. Cluster N3 is a [4Fe-4S]

cluster that is positioned within ∼8 Å of flavin mononu-

cleotide (FMN) in subunit NDUFV1/51 kDa, and is the

first ISC in the redox chain. One electron from FMN is

transferred by N3 to N1b in NDUFS1/75 kDa via inter-

subunit transfer [68, 69].

N1b, N4, N5: NDUFS1/75 kDa. NDUFS1/75 kDa

carries three ISCs; N1b is a [2Fe-2S] cluster and N4 and

N5 are [4Fe-4S] clusters [70]. NDUFS1/75 kDa trans-

fers an electron from N1b to N4 to N5. Notably, N5 is

coordinated by three cysteines and one histidine, so its

EPR properties differ from clusters coordinated by four

cysteine residues [70]. The longest edge-to-edge distance

between ISCs is that between N5 in NDUFS1/75 kDa

and N6a in NDUFS8/TYKY. Thus, the electron transfer

rate between N5 and N6a is the rate-limiting step in the

electron transfer pathway within the ISC chain in cI.

Nonetheless, molecular dynamic simulations suggest

that a water molecule in the intersubunit space can

enhance the rate of transfer by near three orders of mag-

nitude [71].

N6a, N6b: NDUFS8/TYKT. NDUFS8/TYKT has

two [4Fe-4S] clusters and transfers an electron from N6a

to N6b. N6a is located near the interface of the N mod-

ule and the Q module of cI near the zinc-binding site of a

cI accessory subunit, NUMM (in Y. lipolytica) or

NDUFS6 (in humans) [72]. Mutations in Zn-coordinat-

ing residues of NUMM compromise proper assembly of

cI, and deletion of NUMM causes reduction in the EPR

signal of N6a, suggesting that stable insertion of N6a

requires the Zn-binding site in NUMM [72].

N2: NDUFS7/PSST. Cluster N2 is coordinated in

NDUFS7 near its interface with NDUFS8. Due to its

higher redox midpoint potential, N2 receives electrons

from other clusters as an electron sink [70] and transfers

them to ubiquinone exiting the electron transport chain

at cI [73]. The midpoint potential of N2 shows a pH

dependence, becoming more positive at lower pH values

[74]. This pH dependence is due to the protonated group,

His226 of the 49 kDa (NDUFS2) subunit in the case of Y.

lipolytica. Mutation of this histidine abolishes the pH

dependence, but surprisingly does not affect the proton

pumping mechanism, implying that the ISC redox chain

is not linked directly to proton pumping. Rather, it is sug-

gested that the interaction between N2 and semiquinone

species may be linked to a redox-driven coupling mecha-

nism [73, 75, 76].

N1a: NDUFV2/24 kDa. NDUFV2/24 kDa carries a

[2Fe-2S] cluster, N1a, in a hydrophobic surrounding.

N1a is not part of the main electron redox chain; its posi-

tion is too remote and it has a very low mid-point poten-

tial. Because the mid-point potential is higher than that

of flavosemiquinone, it is thought that one of two elec-

trons from FMN is transferred to N1a and the other to

N3 [63]. It has also been suggested that N1a serves a role

in preventing ROS production [77]. Though its specific

role has not been elucidated, N1a is conserved across

species, suggesting its importance.

Complex II (Succinate:Ubiquinone Oxidoreductase;

Succinate Dehydrogenase (SDH))

Complex II comprises four nuclear-encoded

polypeptides; a flavoprotein (SDHA) and a Fe-S protein

(SDHB) form a hydrophilic head in the matrix and are

tethered to a membrane anchor domain that consists of

SDHC and SDHD [78]. Complex II transfers electrons

derived from the oxidation of succinate to fumarate in the

citric acid cycle via FADH2 to ultimately reduce the

mobile electron carrier ubiquinone, coupling the citric

acid cycle and the electron transport chain (ETC).

Complex II (SDH) is the only component of the citric

acid cycle that is membrane-bound. It is distinguished

from other complexes in the ETC by its inability to pump

protons, in addition to its lack of any subunit that is

encoded by mitochondrial DNA. The two reactions cat-

alyzed by cII, the oxidation of succinate in the flavopro-

tein (SDHA) and the reduction of ubiquinone in the

membrane-anchored domain (SDHC + SDHD), are

linked via electron transport through three ISCs in

SDHB [79].
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Succinate dehydrogenase B (SDHB). SDHB con-

tains three different ISCs: [2Fe-2S], [4Fe-4S], and [3Fe-

4S]. The rhombic [2Fe-2S] cluster is ligated by four cys-

teine residues in the N-terminal domain comprising an

α-helix and five β-strands. It is located adjacent to FAD

in the flavoprotein (SDHA). Both [4Fe-4S] and [3Fe-4S]

are in the C-terminal domain, which contains six α-

helices that interact largely with the membrane anchor

domain. The three ISCs are aligned almost linearly. Each

edge-to-edge distance is less than 14 Å, indicating a

favorable electron transfer [61]. The [3Fe-4S] cluster is in

the ISC chain in SDHB and lies 7.1 Å away from

ubiquinone and 13.3 Å from heme [61, 78]. Thus, reduc-

tion of ubiquinone occurs prior to that of hemes, as is

anticipated from their respective redox potentials [78].

Insertion of the ISCs into apo-SDHB occurs in the

mitochondrial matrix prior to formation of a heterodimer

with SDHA; it is guided by HSC20, a co-chaperone in

the ISC biogenesis pathway [80]. Rouault and coworkers

[52, 53] showed in a yeast two-hybrid screen that SDHB

has three independent binding sites for HSC20; two sites

have a L(I)YR motif and one has a KKx6-10KK motif.

These are the two most prevalent consensus sequences for

HSC20 binding and are found in Fe-S cluster recipient

proteins [52, 53].

SDHAF1, an assembly protein for cII, also contains

a L(I)YR motif, implying that it may enable the insertion

of ISCs into SDHB, using its interaction with HSC20

[52]. Co-immunoprecipitation analysis and mitochondr-

ial subfractionation coupled with Blue Native Polyacryl-

amide Gel Electrophoresis (BN-PAGE) results show that

three clusters are transferred by a chaperone/co-chaper-

one system through either the HSC20–HSPA9–ISCU–

SDHB complex or the HSC20–HSPA9–ISCU–

SDHB–SDHAF1 complex [52]. As expected, mutations

in SDHAF1 can cause succinate dehydrogenase deficien-

cy manifesting as infantile leukoencephalopathy with

accumulation of blood succinate and lactate [21].

Complex III (Ubiquinol:Cytochrome c-Oxidoreductase)

Electrons are shuttled from cI and/or cII via

ubiquinol (the reduced form of ubiquinone) to cIII.

Complex III transfers an electron from ubiquinol to

cytochrome c and recycles the other electron from

ubiquinol for proton motive force generation through

the Q-cycle mechanism in a bifurcated fashion.

Structural studies demonstrate that cIII is a dimer [81-

83] that contains three essential redox subunits:

cytochrome b, cytochrome c1, and the Fe-S protein

(ISP), although the total number of subunits varies from

three in prokaryotes to eleven in humans [84]. It harbors

three types of redox centers: two b-type hemes, one c-

type heme, and a [2Fe-2S] cluster. ISP mediates one

electron transfer from ubiquinol to cytochrome c1 mod-

ulated by another electron transfer pathway through

cytochrome b [84-86].

Iron sulfur protein (ISP). ISP in cIII is also called

“Rieske” protein because it has a Rieske-type [2Fe-2S]

cluster that is coordinated by two cysteines and two his-

tidines [82, 85-88]. ISP is anchored to the mitochondrial

inner membrane by a transmembrane helix with a soluble

extramembrane domain called the extrinsic domain at its

C-terminus [81, 82, 89]. The extrinsic domain (ISP-ED)

harbors the [2Fe-2S] cluster in the intermembrane space.

This domain moves to the Qo site or to cytochrome c1

depending on the occupancy of the Qo site by inhibitors,

enabling the [2Fe-2S] cluster to accept an electron from

the site of oxidation of ubiquinol and to donate the elec-

tron to an oxidized cytochrome c1, respectively [81, 82,

90]. Although it is clear that a substantial conformational

change of the ISP-ED is necessary for the bifurcated elec-

tron transfer to overcome the >14 Å distance and unfavor-

able rate, the detailed mechanism is still unknown. Two

models have been proposed to explain movement: (i) the

binding affinity modulated ISP-ED motion switch model

[84, 90] and (ii) the two-position model [91]. Interestingly,

a mutation in cytochrome b of Rhodobacter capsulatus

(G167P) shifts the movement of ISP-ED toward positions

far from the Qo site and induces the production of superox-

ide radicals [92]. A corresponding mutation in the human

enzyme (S151P) has been identified as a mitochondrial

disease-related mutation [92]. Gurung et al. reported that

cIII lacking its ISC creates a proton leak, suggesting a role

for the [2Fe-2S] cluster in gating a proton channel [86].

Insertion of the [2Fe-2S] cluster in ISP is assisted by

LYRM7, an assembly factor shown to bind to it in human

cIII [93]. LYRM7 is co-immunoprecipitated with

HSC20. That the level of ISP is reduced after knockdown

of HSC20 suggests LYRM7 also participates with the

HSC20–HSPA9–ISCU complex for ISP assembly in

cIII, as does SDHAF in assembly of cII [52].

Fe-S CLUSTERS IN MITOCHONDRIAL

METABOLISM

Fe-S clusters play important roles in the various

metabolic pathways within mitochondria. We discuss

below the recent literature on Fe-S involvement in mito-

chondrial metabolism.

Citric Acid Cycle

The citric acid cycle is the central cyclic pathway by

which the carbon skeleton of glucose is released as carbon

dioxide, producing energy in the form of ATP and

reduced coenzymes [94]. A molecule of oxaloacetate is

regenerated in a sequence of eight enzyme-catalyzed

reactions. Three enzymes contain ISCs: aconitase (which
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can be considered as a moonlighting enzyme with dual

roles involving its ISC), succinate dehydrogenase (com-

mon to both the citric acid cycle and the electron trans-

port chain, see section “Fe-S Clusters in Mitochondrial

Respiration”), and fumarase (in several bacteria and a

single archaeon, to date).

Aconitase. Aconitase, the second enzyme of the cit-

ric acid cycle, catalyzes the conversion of citrate to isoci-

trate via an alkene intermediate (cis-aconitate). It has two

conformations depending on its activity, both of which

coordinate an ISC. The inactive protein comprises four

domains and binds a [3Fe-4S] cluster [95]. Once activat-

ed, it acquires another iron atom to form a [4Fe-4S] cen-

ter [96, 97]. The cluster is coordinated by three cysteine

residues, and upon insertion, its labile iron is coordinated

by water molecules. The additional iron atom is crucial

for the activity of the enzyme and can be removed by a

variety of oxidants. For example, thiocyanate (an oxidant

elevated in the arteries of smokers) releases it both in the

isolated enzyme and in cultured cells, leading to protein

dysfunction [98]. Chromate ions also cause the oxidative

inactivation of aconitase and other Fe-S proteins [99].

Similarly, low doses of the strong oxidant peroxynitrite

release the labile iron [100].

A cytosolic isozyme of mitochondrial aconitase

termed iron-regulatory protein (IRP) or iron-responsive

element binding protein (IRE-BP) [101] has aconitase

activity and serves another role in cellular iron homeosta-

sis, a function that is also mediated through its ISC [102].

It is an mRNA-binding protein that binds iron responsive

elements (IRE) in mRNA, resulting in either its stabiliza-

tion or degradation, thus providing a posttranscriptional

control point. The key players in cellular iron homeostasis

are ferritin (an iron-storage protein) and the transferrin

receptor (a membrane gateway for the cellular entry of iron

from blood). Apo-aconitase (carrying a [3Fe-4S] cluster

because of low cytosolic iron concentration) binds and sta-

bilizes the mRNA for the transferrin receptor, promoting

protein production and increasing iron transport into the

cytoplasm. At the same time, apo-aconitase binds to the

ferritin mRNA and prevents its translation under cellular

conditions of low iron [94]. When iron levels are elevated in

the cytoplasm, apo-aconitase acquires the labile iron and

induces a conformational change to holo-aconitase carry-

ing a [4Fe-4S] cluster, leading to the availability of free fer-

ritin mRNA and subsequent ferritin production [103]. As

with the mitochondrial isoform, cytosolic aconitase is also

regulated through its ISC [104]. Aconitase activity is inhib-

ited in cells treated with thiocyanate resulting in increased

IRP-1 activity and ultimately higher levels of iron in the

cytoplasm, possibly resulting in toxic effects [98].

Interestingly, mitochondrial aconitase in yeast has also

been shown to serve a role in mitochondrial DNA

(mtDNA) maintenance independent of its catalytic activi-

ty [105]. Whether mitochondrial or cytosolic, aconitase

presents a case of dual function mediated by its ISC.

DNA Metabolism

Until recently, knowledge of the presence of Fe-S

clusters in enzymes specialized in nucleic acid metabolism

was rare [106]. Now numerous enzymes involved in DNA

and RNA transactions have been shown to carry one or

more ISCs of various types and structures. The presence of

ISCs in primases, helicases, nucleases, ligases, glycosy-

lases, polymerases, and transcription factors has proved to

be essential for protein structure and function [107]. To

date, only a few proteins in mtDNA metabolism have been

demonstrated to contain ISCs, but this number is highly

likely to become substantially larger. ISCs function as a

typical redox-sensing, electron-transferring cofactor in

some nucleic acid processing proteins. For example, the

EndoIII and MutY DNA repair glycosylases sense DNA

damage via charge transfer within their Fe-S clusters [108,

109]. Some RNA metabolism enzymes use ISCs to trans-

fer electrons to S-adenosylmethionine to mediate methy-

lation of target rRNAs and tRNAs [110]. In addition,

many transcription factors that sense nitric oxide regulate

gene expression via small changes in their ISCs [4]. ISCs

also serve multifarious other roles. We present below a

short description of current knowledge; the table summa-

rizes recent findings about some ISC-carrying enzymes in

DNA metabolism, including the several that have been

identified in mitochondria.

Helicases. DNA helicases play a central role in

nucleic acid metabolism to unwind double-stranded

DNA using the energy provided by nucleotide hydrolysis

to translocate along and provide access to single-stranded

DNA in the process of transcription, replication, recom-

bination, and repair [122].

ISCs in helicases have been identified largely in

DNA helicase superfamilies 1 and 2 (SF1 and SF2) [123].

An exception is the mitochondrial replicative DNA heli-

case, which is a SF4 helicase [34, 124]. The XPD/FANCJ

family including XPD, FancJ, Chlr1, and RTEL has been

studied extensively due to its strong association with

human diseases [125]. XPD was the first ISC-carrying

DNA repair helicase in SF2 to be identified [126]. Its

[4Fe-4S] cluster is located in the core helicase domain.

Both structural [127, 128] and biochemical [129] analyses

show that the ISC in XPD is proximal to the duplex DNA

strand separation site, suggesting a role for the ISC in

determination of the unwinding point. ISCs in XPD and

FancJ are also essential for helicase activity in nucleotide

excision repair [112, 126]. Consequently, mutations in

human XPD cause several genetic diseases such as

Xeroderma pigmentosum, Cockayne syndrome, Fanconi

anemia, and trichothiodystrophy [112, 126]. Further-

more, Fe-S-cluster DNA helicases were shown to be

inhibited potently by protein–DNA interactions, thereby

affecting DNA metabolism. For example, the helicase

activity of FancJ is inhibited by shelterin proteins that

bind telomeres [130].
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Mitochondrial replicative DNA helicase. The mito-

chondrial replicative DNA helicase from Drosophila

melanogaster is the only known ISC-containing replisome

protein identified in mitochondria to date. Our group has

shown recently that its N-terminal domain contains a

[2Fe-2S] cluster that is essential for protein stability in

vitro [34]. Its ISC is bound by the homologous cysteine

residues that coordinate zinc in the primase-helicase

from bacteriophage T7. This evolutionary switch from

zinc to iron binding is intriguing, particularly because it

resides in the N-terminal part of the protein that has not

yet been ascribed a clear function.

Helicase-nucleases. Nucleases cleave phosphodi-

ester bonds by various catalytic mechanisms [131]. Some

nucleases have evolved into bifunctional enzymes carry-

ing two catalytic domains in a single polypeptide: a heli-

case domain for unwinding DNA and a nuclease domain

for phosphodiester bond cleavage [132]. Two helicase-

nucleases in the RecB family have been shown to carry

ISCs: AddAB and Dna2. AddAB is a well-studied Fe-S

helicase-nuclease from the bacterium Bacillus subtilis

[133]; it contains a 4Fe-4S cluster in its C-terminal

domain with roles in maintaining the structural stability

of the nuclease domain and binding to DNA ends [115].

Similar structures and roles have been found in other

nucleases outside the helicase-nuclease group, including

yeast exonuclease 5 [117] and the archaeal nuclease Cas4

from Sulfolobus solfataricus [119].

Dna2. Dna2, a helicase-nuclease in the RecB fami-

ly, was identified as an ISC-containing enzyme that

localizes to both the nucleus and mitochondria [35, 134,

135]. Its ISC was predicted based on the presence of a

conserved ISC signature motif within the nuclease active

site [116]. Pokharel and Campbell demonstrated the

presence of the ISC in the Dna2 helicase-nuclease from

Saccharomyces cerevisiae by UV-vis spectrometry and

mutagenesis of the ISC-ligating cysteines, which causes

reduction in both its nuclease and ATPase activities, sug-

gesting a possible role of the ISC in linking its nuclease

and helicase functions [35]. However, variants lacking the

cluster showed no significant difference in DNA binding

[35]. Dna2 is involved in maintaining the integrity of

both the nuclear and mitochondrial genomes [134, 135].

Its role in yeast nuclear DNA replication and repair in

Okazaki fragment processing and double-strand break

repair, respectively, are well-characterized [136]. Zheng

et al. demonstrated that human Dna2 stimulates mtDNA

polymerase activity and is involved in removal of RNA

primers and intermediates of long-patch base excision

repair in mitochondria [134].

Nucleases. The structural signature of the nuclease

domain in which the ISC is bound in the AddAB heli-

Protein

Replicative helicases

Repair helicases

Helicase-nucleases

Nucleases

Structure and function of ISCs in some DNA metabolism enzymes

References

[34]

[111]

[112]

[113] 

[114]

[115]

[35, 116] 

[117, 118]

[119, 120]

[121]

ISC type

[2Fe-2S]

[4Fe-4S]

[4Fe-4S]

[4Fe-4S]

[4Fe-4S]

[4Fe-4S]

[4Fe-4S]

[4Fe-4S]

[4Fe-4S]

[2Fe-2S]

Organism

Dm (E)

St (A)

Hs (E)

Hs (E)

Hs (E)

Bs (B)

Sc (E)

Sc (E) 
Hs (E)

Ss (A)

Pc (A)

Type

mtDNA helicase

XPD

FancJ 

Rtel1

ChlR1/DDX11

AddAB

Dna2

Exonuclease 5

Cas4

Cas4

Notes: A, Archaea; B, Bacteria; E, Eukarya; Bs, Bacillus subtilis; Pc, Pyrobaculum calidifontis; Ss, Sulfolobus solfataricus; St, Sulfolobus tokodaii; Sc, 

Saccharomyces cerevisiae; Dm, Drosophila melanogaster; Hs, Homo sapiens; Mito, mitochondria; Nuc, nucleus.

Subcellular
location

Mito

Nuc

Nuc

Nuc

Nuc

Nuc and Mito

Mito and Nuc

Known function(s)

stability

helicase activity

helicase activity

redox signaling

unknown

stability, DNA binding

helicase and nuclease 
activities and crosstalk

exonuclease activity

DNA binding, nuclease
activity

no effect on nuclease activity
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case-nuclease is also found in other nucleases including

exonuclease 5 and Cas4 [107, 115]. An in vitro study

showed that the ISC of the Cas4 nuclease from S. solfa-

taricus serves a role in protein stability [119]. The crystal

structure of Cas4 revealed a toroidal form comprising five

dimers, with each protomer containing a 4Fe-4S cluster

that is required for DNA binding and cleavage activity

[120]. Interestingly, Cas4 from Pyrobaculum calidifontis

carries a 2Fe-2S cluster, indicating species-specific dif-

ferences. However, the loss of the ISC apparently has no

effect on nuclease activity [121].

Yeast exonuclease 5. Yeast exonuclease 5 (EXO5)

localizes to mitochondria and serves an essential role in

mitochondrial genome stability [117]. The presence of an

ISC was predicted by sequence alignment with RecB

family nucleases, and it shares conserved cysteine

residues with those in the nuclease domain of AddAB

[117]. The presence of an ISC was subsequently demon-

strated by UV-vis spectrometry in its human homolog,

hEXO5 [118]. A mutant lacking the ISC in hEXO5

exhibits only ∼10-20% residual nuclease activity; howev-

er, it may function only in nuclear DNA repair because

unlike yeast EXO5, hEXO5 gene lacks a mitochondrial

leader sequence [118].

Apoptosis

Mitochondria are not only essential for the vitality of

cells; they serve a strategic role in committing cells to

undergo programmed cell death [137]. Intrinsic apoptosis

is mediated by the intactness of the mitochondrial outer

membrane. A breach in the outer membrane results in the

release of proteins from the intermembrane space (specif-

ically cytochrome c), and a cascade of events eventually

leads to apoptotic cell death [138, 139]. Fe-S proteins

play multifarious roles in mitochondrial iron homeostasis

and apoptosis. MitoNEET is an integral mitochondrial

outer membrane protein that has been implicated in iron

homeostasis in both mitochondria and the cytoplasm [11,

140, 141]. It contains a redox-active [2Fe-2S] cluster [24,

142]. The induction of cell death through treatment with

TNFα is mediated by the binding of the Stat3–Grim–19

complex to mitoNEET, forcing the rapid release of its

ISC. Mitochondria then accumulate iron in the matrix,

inducing the formation of reactive oxygen species and

mitochondrial injury accompanied by cell death [143].

MitoNEET has been shown recently to act as an ISC

transfer protein [144] that uses a redox switch mechanism

to regulate transfer [145]; its redox-sensing role helps to

combat oxidative injury by recovery of labile Fe-S pro-

teins [146]. In pancreatic β cells, overexpression of

mitoNEET leads to an increased sensitivity to TNFα

cytotoxicity, and the effects of TNFα can be attenuated if

it is unable to transfer its ISC (via pharmacological inter-

vention) [147]. MitoMEET has also been implicated in

the proliferation of human breast cancer cells and promo-

tion of tumor growth [148].

Cancer can also be induced by the absence of p53,

the “guardian of the genome”. Lack of p53 in tumor cells

was shown recently to decrease utilization of mitochon-

drial iron by downregulation of the expression of human

frataxin [149]. Cellular iron deficiency is also detrimental

for lipid synthesis and will eventually alter the properties

and functions of biological membranes [150], thereby

affecting multiple mitochondrial pathways.

The CIA machinery for ISC assembly in the cyto-

plasm is also involved in mitochondrial integrity and/or

apoptosis. Human cytokine induced apoptosis inhibitor

(CIAPIN1) belongs to the anamorsin protein family and

has been shown to function as an antiapoptotic protein

through the regulation of Bcl-2 and Bax [151].

Anamorsin carries a [2Fe-2S] cluster and functions early

in the CIA pathway as part of an electron transfer chain

[152]. The yeast homolog of anamorsin, Dre2, is also a

Fe-S protein to which electrons are transferred from

Tah18 in the early steps of CIA [153]. The interaction of

Tah18 and Dre2 is lost when yeast cells are exposed to

lethal doses of H2O2 and Tah18 is relocalized to mito-

chondria. There it mediates the loss of outer membrane

integrity, promoting apoptosis. Interestingly, anamorsin

was able to substitute for yeast Dre2 and in its interaction

with Tah18 [154].

CONCLUSIONS AND FUTURE DIRECTIONS

The requirements for and versatility of iron-sulfur

clusters in myriad metabolic pathways in organisms

across taxa has led to intensive research on their structur-

al and functional properties. The roles of ISCs in various

cellular compartments and the influence of environmen-

tal factors upon them have been explored in detail in mul-

tiple systems. In mitochondria, their function in respira-

tion is well documented, as is the pathway of their syn-

thesis and transfer to recipient proteins. Other areas of

mitochondrial Fe-S biology are less well explored, and

the function of ISCs in mitochondrial nucleic acid

metabolism remains somewhat enigmatic. To our knowl-

edge, only three such proteins have been identified to

date, each playing an important role in DNA replication

and/or repair, and perhaps recombination, but their evo-

lutionary histories are not readily apparent; each of them

may not be present in all animal taxa and/or they may not

all carry an ISC. For example, the mtDNA replicative

helicase in insect lineages is likely to carry a [2Fe-2S]

cluster, which is likely not present in mammals (or per-

haps any vertebrate species), and this enzyme is absent in

yeast, despite its evolutionary relatedness to the primase-

helicase of bacteriophage T7. To date, no ISC-containing

protein in mitochondrial RNA metabolism has been

identified, and given the structural and catalytic proper-
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ties of proteins involved in mitochondrial transcription,

RNA processing and storage, and translation, this is sur-

prising. Thus, there remains much to explore in the realm

of ISC biology within the mitochondrion.
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