2Irkutsk State University, 664003 Irkutsk, Russia; fax: +7 (3952) 241-855; E-mail: isuplantphysiology@mail.ru
3Université Louis Pasteur, Institut de Biologie Moléculaire des Plantes du CNRS, 67084 Strasbourg, France; fax: +33 (0) 367155300; E-mail: andre.dietrich@ibmp-cnrs.unistra.fr
* To whom correspondence should be addressed.
Received May 30, 2016; Revision received June 24, 2016
In recent decades, it has become evident that the condition for normal functioning of mitochondria in higher eukaryotes is the presence of membrane transport systems of macromolecules (proteins and nucleic acids). Natural competence of the mitochondria in plants, animals, and yeasts to actively uptake DNA may be directly related to horizontal gene transfer into these organelles occurring at much higher rate compared to the nuclear and chloroplast genomes. However, in contrast with import of proteins and tRNAs, little is known about the biological role and molecular mechanism underlying import of DNA into eukaryotic mitochondria. In this review, we discuss current state of investigations in this area, particularly specificity of DNA import into mitochondria and its features in plants, animals, and yeasts; a tentative mechanism of DNA import across the mitochondrial outer and inner membranes; experimental data evidencing several existing, but not yet fully understood mechanisms of DNA transfer into mitochondria. Currently available data regarding transport of informational macromolecules (DNA, RNA, and proteins) into the mitochondria do not rule out that the mechanism of protein and tRNA import as well as tRNA and DNA import into the mitochondria may partially overlap.
KEY WORDS: mitochondria, DNA, import, mitochondrial permeability transition pore, porin, adenine nucleotide translocator, plants, yeasts, mammalsDOI: 10.1134/S0006297916100035