
The NT2/D1 cell line is one of the best-character-

ized human embryonal carcinoma cell lines that is widely

used in studies of pluripotency maintenance, cell fate

determination and differentiation [1, 2]. These cells

resemble human embryonal stem cells in gene expression

profiles and DNA methylation status [3]. In addition,

NT2/D1 cells show neuronal, mesodermal and ectoder-

mal lineage potential [1, 4]. Since work with human

embryonic stem cells raises complex ethical and legal

issues, embryonal carcinoma cells represent an adequate

in vitro model system for the study of human embryonic

development [5].

NF-Y (nuclear transcription factor Y) has a dual

role as both an activator and a repressor of transcription

[6-8]. NF-Y regulates activity of target genes through

CCAAT box, a widespread control element mapping to

proximal promoters, tissue-specific enhancers, and

selected subclasses of human endogenous retrovirus

(HERV) long terminal repeats (LTR) [7, 9]. It is het-

erotrimer protein complex that comprises three subunits

(NF-YA, NF-YB and NF-YC) [10]. NF-YA is consid-

ered the limiting and regulatory subunit of the trimer,

since it is required for complex assembly and sequence-

specific DNA binding [10]. There are several isoforms of

NF-YA subunit resulting from differential splicing [11].

Tissue-specific alternative splicing produces two major

isoforms, NF-YA short (NF-YAs) and NF-YA long (NF-

YAl), differing in 28 amino acids in the Q-rich transcrip-

tional activation domain [11]. Recently, it was shown that

the short isoform of NF-YA (NF-YAs) is active in mouse

embryonic stem cells (mESC), where it promotes prolif-

eration and stemness and prevents differentiation of these

cells [12].

Expression of transcription factor SOX2 is one of the

hallmarks of embryonal stem cells and induced pluripo-

tent stem cells [13-16]. Its expression is tightly regulated

during development, since precise regulation of core

transcription factors is essential not only for ESCs

pluripotency maintenance but also for restraining their

differentiation potential [17]. We have previously shown

that NF-Y transcription factor regulates expression of

several human SOX genes (SOX2, SOX3, SOX14, and
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Abstract—Transcription factor NF-Y belongs to the embryonic stem cell transcription factor circuitry due to its role in the

regulation of cell proliferation. We investigated the role of NF-Y in pluripotency maintenance using NT2/D1 cells as one

of the best-characterized human embryonal carcinoma cell line. We investigated the efficiency of protein transduction and

analyzed the effects of forced expression of short isoform of NF-Y A-subunit (NF-YAs) on NT2/D1 cell growth and expres-

sion of SOX2. We found that protein transduction is an efficient method for NF-Y overexpression in NT2/D1 cells. Next,

we analyzed the effect of NF-YAs overexpression on NT2/D1 cell viability and detected significant reduction in cell growth.

The negative effect of NF-YAs overexpression on NT2/D1 cell pluripotency maintenance was confirmed by the decrease in

the level of the pluripotency marker SOX2. Finally, we checked the p53 status and determined that the NF-Y-induced inhi-

bition of NT2/D1 cell growth is p53-independent.
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SOX18) in NT2/D1 cells [18-22]. This transcriptional

activation function of NF-Y is mediated, at least in part,

by direct binding to CCAAT boxes within promoters of

target genes and by making complex interplay with other

factors involved in transcriptional regulation of human

SOX genes [18-24]. To test the role of NF-Y in pluripo-

tency maintenance of human embryonal carcinoma cells,

we studied stemness features of NT2/D1 cells in NF-Y

overexpression conditions. We used a strategy previously

described for human hematopoietic progenitor cells [25]

and for mESC [12]. To overcome problems with transient

and stable transfections procedures for NF-YA overex-

pression, a GST-TAT-NF-YAs protein transduction pro-

cedure was used, where the TAT epitope enables GST-

TAT-NF-YAs fusion protein rapid pass through biologi-

cal membranes [12, 25].

In this study, we investigated the efficiency of the

protein transduction procedure for the overexpression of

NF-Y protein in NT2/D1 cells and analyzed the effects

of forced expression of short isoform of the NF-YA sub-

unit (NF-YAs) on some of the basic stemness features of

human NT2/D1 cells: cell growth and expression of

SOX2 pluripotency marker. We have shown that protein

transduction is an efficient method for NF-Y overexpres-

sion in NT2/D1 cells. Next, we analyzed the effect of

NF-YAs overexpression on NT2/D1 cell viability and

detected significant reduction in the cell growth. Negative

effect of forced NF-YAs expression on NT2/D1 cell

pluripotency maintenance was confirmed by the decrease

in the level of pluripotency marker SOX2. Finally, we

checked the p53 status and detected no increase in p53

protein level after NF-Y protein transduction. However,

protein transduction itself led to a significant increase in

p53 level, suggesting that NF-Y-induced inhibition of

NT2/D1 cell growth is p53-independent.

MATERIALS AND METHODS

Cell culture and protein transduction. NT2/D1 cells,

kindly provided by Prof. P. W. Andrews (University of

Sheffield, UK), were maintained in Dulbecco’s Modified

Eagle’s medium (DMEM) supplemented with 10% fetal

bovine serum (FBS), 0.45% (w/v) glucose, 2 mM L-glut-

amine, and penicillin/streptomycin (all from Invitrogen,

USA), at 37°C in 10% CO2 as previously described [2,

26]. For protein transduction treatments, cells were seed-

ed at concentration 0.3·106 cells per well in 6-well plates.

Fusion proteins GST-TAT-NF-YAs and GST-TAT

were a kind gift of Prof. Roberto Mantovani (University

of Milan, Italy). Protein transduction of NT2/D1 cells

was conducted as described previously [12]: cells were

treated with 50 nM of the fusion proteins in complete

medium for 48, 72 or 96 h with medium change every

24 h. After treatment, cells were counted manually using

trypan blue dye exclusion staining.

Western blot. Whole cell lysates were prepared from

either control or fusion protein-treated NT2/D1 cells

using NP-40 buffer (20 mM Tris-HCl, pH 8.0, 5 mM

EDTA, 150 mM NaCl, 1% Nonidet P-40, 10% glycerol

and protease inhibitor cocktail) (Roche Diagnostics

GmbH, Switzerland). Western blots were performed

using anti-NF-YA Mab1a antibodies (a kind gift of Prof.

Roberto Mantovani), anti-SOX2 antibodies (R&D

Systems, USA), anti-p53 DO1 antibodies (Gene Spin,

Italy), anti-α-tubulin DM1A antibodies (Calbiochem,

Germany), and anti-GAPDH AM20337PU-S antibodies

(Acris Antibodies Inc., Germany).

RESULTS AND DISCUSSION

GST-TAT-NF-YAs protein transduction efficiency in

NT2/D1 cells. To evaluate the efficiency of the protein

transduction method in NT2/D1 cells, we employed a

protocol previously used for transduction of GST-TAT-

NF-YAs into mouse embryonic stem cells (mESC) [12].

We treated NT2/D1 cells with GST-TAT-NF-YAs and

GST-TAT (as negative control) at concentration of

50 nM for different time intervals (48, 72 and 96 h) [12].

After treatment, whole cell lysates were prepared and

Western blot analyses were used to assess the amount of

intracellular recombinant fusion protein (Fig. 1). Our

results showed that GST-TAT-NF-YAs was translocated

efficiently in NT2/D1 cells after 48 h of treatment (Fig.

1). A 72 h treatment led to a tremendous increase in the

recombinant protein in whole cell lysates (Fig. 1). It is

interesting that prolonged treatment (96 h) did not

increase further the amount of intracellular GST-TAT-

NF-YAs. In contrast to results obtained with mESC, 96 h

of transduction decreased the level of fusion protein to

the amount seen after 48 h treatment (Fig. 1). These data

indicate that protein transduction is an effective method

for rapid delivery of GST-TAT-NF-YAs protein in

NT2/D1 cells with the maximum increase in concentra-

tion of fusion protein achieved after 72-h treatment.

Fig. 1. Western blot analyses of levels of NF-YA proteins after

treatments for 48, 72 and 96 h with GST-TAT-NF-YAs at con-

centration of 50 nM. NT2/D1, untreated cells; GST-TAT con-

trol, NT2/D1 cells transduced with 50 nM of control GST-TAT

fusion protein for 72 h. α-Tubulin was used as loading control.

← α-tubulin

NT2/D1 48 h     72 h      96 h
GST-TAT
control

GST-TAT-NF-YAs

← GST-TAT-NF-YAs
← endogenous NF-YA
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Effects of GST-TAT-NF-YAs fusion protein trans-

duction on viability of NT2/D1 cells. It has been shown

previously that the short isoform of NF-YA (NF-YAs)

stimulates growth of mESCs and human hematopoietic

progenitors [12, 25]. To check the potential effect of

GST-TAT-NF-YAs on the viability and proliferation of

NT2/D1 cells, we treated cells for 48 and 72 h as

described above. Since treatment for 96 h resulted in a

reduction of intracellular fusion protein, compared to

72 h treatment, we excluded 96 h transduction from fur-

ther experiments. The cell viability was measured using

trypan blue exclusion, and the resulting numbers of viable

cells are presented in Fig. 2. After GST-TAT-NF-YAs

protein transduction, growth rates of NT2/D1 cells were

significantly reduced: 50% after 48 h and 60% after 72 h

treatment. Under the same experimental conditions,

control protein GST-TAT did not show the growth inhi-

bition effect. These results are in concordance with the

observations of Gurtner et al. that unrestricted NF-Y

activity induced E2F1- and wtp53-dependent apoptosis

in mouse embryonic fibroblasts and human cells [27]. In

contrast, forced expression of NF-Y promotes prolifera-

tion and stemness in mESC and human hematopoietic

progenitors [12, 25].

To explain this phenomenon and to elucidate the

mechanisms involved in NF-Y-induced growth inhibi-

tion of NT2/D1 cells, we checked the status of SOX2 and

p53 proteins after GST-TAT-NF-YAs transduction.

Effects of GST-TAT-NF-YAs transduction on expres-

sion of SOX2 and p53 proteins in NT2/D1 cells. Growing

evidence suggests the role of NF-Y in the regulation of

cell cycle progression in mouse and human embryonic

stem cells [12, 28]. In mESC, NF-YAs has an important

role in pluripotency maintenance by mechanisms that

involve direct activation of stemness genes, including sox2

[12]. In our previous studies, we analyzed the expression

of SOX2 protein in NT2/D1 cells transiently transfected

with the short isoform of the NF-YA subunit, and detect-

ed only mild increase in the level of SOX2 protein [21].

Transient transfection allows only short-term protein

overexpression studies due to the short half-life of NF-YA

upon transfection. In this study, we took advantage of

high concentration of GST-TAT-NF-YAs in NT2/D1

cells upon transduction to investigate the effect of pro-

longed overexpression of NF-YA (48 and 72 h) on the

expression of SOX2. A 48 h treatment only slightly elevat-

ed the level of SOX2 in NT2/D1 cells (Fig. 3a, compare

lanes 2 and 3), which correlates with the results obtained

in our previous studies [21]. In contrast, 72 h treatment

led to a marked decrease in SOX2 expression (Fig. 3a,

compare lanes 5 and 6). This decline in SOX2 protein

level correlates with the high level of intracellular GST-

TAT-NF-YAs in NT2/D1 cells (Fig. 1). These data might

suggest that deregulation of SOX2, one of the master reg-

Fig. 2. Effect of GST-TAT-NF-YAs on cell growth. NT2/D1 cells

were grown in medium containing 50 nM GST-TAT-NF-YAs or

GST-TAT (as negative control) for 48 and 72 h. Cells were count-

ed manually using trypan blue exclusion resulting in number of

viable cells. Data are presented as percentages of untreated

NT2/D1 cells. Values are presented as the means ± S.E.M. of at

least three independent experiments, p < 0.05.
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ulators of pluripotency, is one of the mechanisms involved

in NF-YA-induced inhibition of cell growth of NT2/D1

cells. It has been previously shown that elevated expres-

sion of SOX2 interferes with transcriptional activity of

genes involved in cell cycle arrest and apoptosis in human

embryonal stem cells and human embryonal carcinoma

cells [29].

As mentioned above, p53-dependent apoptosis has

been described previously as an additional mechanism of

NF-YA antiproliferative effect [27]. Since NT2/D1 cell

line is wt p53, we checked the level of p53 protein after

GST-TAT-NF-YAs transduction (Fig. 3b). Western blot

analysis showed that NF-YAs overexpression had no sig-

nificant effect on p53 level during 48 and 72 h treatments

(Fig. 3b, compare lanes 2 and 3 and lanes 5 and 6, respec-

tively). Precisely, GST-TAT-NF-YAs transduction

increased the level of p53 protein, but the same effect was

observed in transductions with control GST-TAT protein

at both time points (Fig. 3b, lanes 2 and 3 versus lane 1 for

48 h; lanes 5 and 6 versus lane 4 for 72 h). These data sug-

gest that the increase in p53 level is not the result of NF-

Y overexpression, but it is rather the effect of GST-TAT

fusion protein or the procedure of protein transduction

itself. At the same time, transduction with control GST-

TAT protein did not affect viability and cell growth of

NT2/D1 cells (Fig. 2). These results suggest that in

NT2/D1 cells growth inhibition after NF-Y overexpres-

sion is either p53-independent, or it requires increased

expression of both NF-YA and p53 proteins. It has been

shown that NF-Y and p53 could function as partners in

regulation of cell proliferation (for review, see [30]).

Typically, p53 regulates transcription of target genes

through binding to the consensus DNA sequence, p53RE

(p53-responsive element) [31-37]. It has been shown that

in the genes lacking p53RE, p53 can associate with NF-Y

on CCAAT box elements and regulate transcription of

important proapoptotic genes [38].

In conclusion, our results suggest that in human

embryonal carcinoma cells NT2/D1, GST-TAT-NF-YAs

transduction inhibits proliferation through a mechanism

dependent on downregulation of stemness factor SOX2.

Our data are in contradiction with results obtained on

mESC and human hematopoietic progenitors [12, 25].

These discrepancies probably reflect cellular and devel-

opmental specificity of NF-Y action. This specificity is

established through multiple mechanisms. NF-Y directly

binds CCAAT box and regulates activity of target genes

[7]. Another important mechanism involves recruitment

of different cofactors and direct interactions of NF-Y

with other transcription factors [39]. Also, histone-like

properties of NF-Y enable its dual function in transcrip-

tional regulation, as an activator or as a repressor [6].

In addition, posttranslational modifications of NF-Y

add another level of complexity to NF-Y action by con-

trolling the amount of NF-Y in the cell [27]. It was sug-

gested previously that the total amount of NF-Y could

define cell choice between proliferation, cell cycle arrest,

or cell death [27]. NF-Y plays one of the central roles in

regulation of cell cycle progression genes, such as cyclin

A, cyclin B1, cyclin B2, cdc25A, cdc25C, cdk1, and

E2F1 [40-47]. Precise activation of these genes deter-

mines the cell fate decision: cell division or cell death

[48]. Activation of these genes is also highly dependent on

cell type, genetic background and cellular environment

[48].

Since role of NF-Y in the apoptotic cascade is not

fully understood, the mechanisms underlying NF-Y

induction of NT2/D1 cell growth inhibition and SOX2

protein decrease need to be further investigated.
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