
Several animals when confronted with environmen-

tal challenges such as cold temperatures or food restric-

tion will enter a hypometabolic state in which they will

remain until favorable conditions return. Natural strate-

gies of hypometabolism are numerous and include, but

are not limited to, aestivation, diapause, daily torpor, and

mammalian hibernation. Hibernators can sustain cold

ambient conditions for prolonged periods of time, and

the changes associated with the process of hibernation are

well characterized. Besides reduced metabolic rate,

mammalian hibernation is also associated with a reduc-

tion in heart rate, blood flow, and oxygen consumption

[1]. Significant metabolic changes are observed including

a switch from a carbohydrate-based metabolism to one

that leverages stored lipids [2]. At the biochemical and

molecular levels, a plethora of modifications have been

documented in hibernating mammals including reversible

protein phosphorylation, differential expression of select-

ed transcripts and proteins, as well as modulation of non-

coding RNAs [3, 4]. This review discusses the current

knowledge associated with mammalian hibernation with

a particular focus on the potential role of non-coding

RNAs involved in the regulation of lipid metabolism dur-

ing this hypometabolic state.

MAMMALIAN HIBERNATION:

A “COOL” PROCESS?

Natural models of hypometabolism. Metabolic rate

depression is essential for survival of numerous species

confronted with extreme environmental conditions and

notably underlies aestivation, diapause, and hibernation.

A series of concerted physiological, biochemical, and

molecular levels are observed during these hypometabol-

ic states. Such processes are usually associated with basal

metabolic rate reduction to levels between 5 and 40% of

those experienced by resting animals [5]. Aestivation, for

example, is a state of aerobic torpor leveraged by species

that are usually confronted with arid conditions. Well-

characterized aestivating vertebrates notably include

amphibians such as the spadefoot toad Scaphiopus couchii

and mollusks such as the land snail Otala lactea [6]. An

important element for long-term survival of species that

aestivate is the accumulation, conservation, and usage of

fuel reserves. Aerobic oxidation of lipid reserves is

employed by species such as S. couchii as energy source

during aestivation [7]. Hypometabolism is also observed
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in species that undergo diapause such as cold-hardy

insects. Diapause is undertaken by species as a develop-

mental response to changing seasons and environmental

conditions. This genetically programmed phenomenon

allows species to face seasonally recurring environmental

stresses as well as to initiate and regulate growth and

development in favorable environmental conditions [8].

Although not its exclusive role, diapause often positively

influences cold hardiness and overwintering survival in

insects. Diapause-associated changes, including synthesis

of cryoprotectants and changes in membrane lipid com-

position, ultimately help with protection against cold

stress [9, 10]. Not unlike diapausing insects, mammalian

hibernators also have to confront cold temperatures for

extended periods of time. Several groups of mammals

have been reported to hibernate including marsupials,

rodents, bats, and primates [11]. A plethora of changes

are undertaken to enter, maintain, and exit the

hypometabolic state associated with hibernation. A strong

reliance on lipid catabolism as the primary fuel source as

well as differential expression of selected, torpor-respon-

sive, transcripts is notably observed [12, 13]. As a well-

characterized model of hypometabolism and a particular

research interest of our laboratory, the focus of the review

will now be directed towards mammalian hibernation.

Physiological changes associated with mammalian

hibernation. The changes associated with mammalian

hibernation are numerous and well documented. A peri-

od of hyperphagia that leads to body fat increase is fre-

quently experienced in animals prior to the hibernating

season as significant triglyceride synthesis and storage is

undertaken in white adipose tissue [12]. These are essen-

tial, as lipid metabolism is an essential fuel source for

hibernating species. A typical hibernating season consists

in a series of multiple torpor bouts that can last up to sev-

eral weeks and that are separated by brief arousal periods

[14]. The duration of the torpor periods differs between

species and is influenced by ambient temperatures [15].

Small mammalian hibernators, such as the thirteen-lined

ground squirrel Ictidomys tridecemlineatus or the little

brown bat Myotis lucifugus, can reduce vital functions sig-

nificantly during torpor. Core body temperature is

reduced to levels nearing the freezing point while heart

rate can fall to 10 beats/min from the 350-400 beats/min

measured in euthermic animals [11]. Another fascinating

physiological feat observed in hibernating mammals

includes a considerable reduction in breathing rate [16].

From a metabolic standpoint, mammalian hibernators

can suppress their metabolism by up to 99% during torpor

when compared with the basal metabolic rate measured

in euthermic animals [11]. It is estimated that hibernators

can save up to 90% of the energy they would otherwise

require if they were to remain active during the cold sea-

son [17].

Molecular switches underlying metabolic depression

in torpid animals. Numerous biochemical and molecular

changes underlie metabolic rate depression during mam-

malian hibernation. Energy-consuming cellular process-

es including transmembrane ion transport and transcrip-

tion are significantly suppressed in torpid animals [18,

19]. Interestingly, the rapid and reversible physiological

changes associated with the torpor-arousal cycles experi-

enced by hibernators must be supported by an equally

dynamic system at the molecular level. Reversible protein

phosphorylation has emerged over time as a crucial post-

translational mechanism involved in regulating key

molecular players involved in metabolic rate depression.

Phosphorylation-mediated pyruvate dehydrogenase

activity inhibition, leading to carbohydrate catabolism

suppression, is well documented in different models of

hypometabolism [20, 21]. Na+,K+-ATPase activity is

another example of an enzyme with an activity that is

strongly influenced by phosphorylation in mammalian

hibernation [18]. Despite the importance of reversible

protein phosphorylation for metabolic rate suppression,

additional posttranslational mechanisms including

sumoylation and ubiquitination are modulated to various

degrees in hypometabolism [22, 23]. Protein synthesis, an

important ATP-consuming process, is significantly inhib-

ited during hibernation. A study performed in brain of

torpid and euthermic ground squirrels showed that the

translational rate during hibernation could be as low as

0.04% when compared with the one measured in euther-

mic squirrels [24]. An in vivo study of protein synthesis in

hibernating Syrian hamsters Mesocricetus auratus demon-

strated significant reduction of this process in several

organs [25]. Posttranslational modifications of initiation

and elongation factors of protein synthesis, such as eIF2α

and eEF2, underlie in part the changes observed in trans-

lational rate during torpor [24]. Significant alterations in

the activity of the mTOR signaling cascade, a key pathway

linked to protein synthesis, have been reported in hiber-

nating skeletal muscle of ground squirrels and could also

account for the reduced translational rates observed in

torpor [26]. More recently, studies have highlighted the

potential importance of the small non-coding RNAs

microRNAs (miRNAs) in regulating expression of select-

ed transcripts in different models of hypometabolism pro-

viding yet another mean of translational control for hiber-

nating mammals [4]. A particular emphasis will be placed

in the final section of this review on the role that miRNAs

can play during hibernation.

LIPID METABOLISM AND HIBERNATION

Lipid synthesis and degradation: fueling hibernation.

Mammalian hibernators cycle on an annual basis between

active and hibernating periods. Energy requirements

associated with these two states differ significantly. Active

hibernators spend a significant portion of their time eat-

ing and accumulating fat stores, primarily as triglycerides,
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that contribute to a considerable gain in body mass [12].

The hibernating golden-mantled ground squirrels

Callospermophilus lateralis can spend up to 57% of their

active hours feeding prior to hibernation [27]. Elevated

activities of enzymes involved in triglycerides synthesis,

such as diacylglycerol acyltransferase, have been reported

in white adipose tissue of summer active golden-mantled

ground squirrels and of summer active yellow-bellied

marmots Marmota flaviventris [28, 29]. These studies fur-

ther demonstrated that enzymes involved in fatty acid

synthesis possess higher activities in selected tissues of

summer active animals when compared with torpid ani-

mals. In addition, recent work performed in tissues of

hibernating golden-mantled ground squirrels showed sig-

nificant overexpression in torpor of the phosphorylated

and inactive form of acetyl-CoA carboxylase, an enzyme

that catalyzes an essential step in fatty acid synthesis [30].

While in torpor, hibernators address their energy

demands primarily via β-oxidation of fatty acids sourced

from white adipose tissue [12]. Acyl-CoA dehydrogenase,

the enzyme catalyzing the initial step in β-oxidation,

exhibits marked induction in its activity in brown adipose

tissue and white adipose tissue of the hibernating jerboa

Jaculus orientalis [31]. Increased fatty acid plasma con-

centration has also been reported in selected hibernating

models such as M. flaviventris, suggesting increased lipo-

lysis in torpid animals [32, 33]. In addition to being an

important fuel source for hibernators, it is also important

to emphasize the role of fatty acids, and in particular

polyunsaturated fatty acids, in preserving the fluidity of

membrane phospholipids at low body temperatures [34].

Several studies have demonstrated that hibernating mam-

mals or cold-water fish, for example, notably displayed a

higher proportion of polyunsaturated fatty acids in their

body fats than species in warmer climates [35, 36].

Regulatory roles of lipids during hibernation. Besides

being an important source of energy and essential mole-

cules underlying membrane fluidity at low temperatures,

lipids can also influence a myriad of torpor-related

processes via diverse signaling and regulatory functions.

For example, fatty acids can act as ligands and activate

the nuclear receptors peroxisome proliferator-activated

receptors (PPARs) [37]. These transcription factors regu-

late lipid metabolism via differential expression of

numerous target genes. Target genes such as pyruvate

dehydrogenase kinase isozyme-4 and apolipoprotein A-I

can impact lipid metabolism as well as ketone body for-

mation, respectively, and are differentially expressed in

hibernation [38, 39]. PPAR protein levels are also modu-

lated in several models of hypometabolism including

PPARγ in the hibernating bat M. lucifugus, ground squir-

rel I. tridecemlineatus, and jerboa J. orientalis [40-42].

PPARα is differentially expressed in hibernating J. orien-

talis and has been put forward as a key controller of tor-

por [43, 44]. In addition to PPARs, additional nuclear

receptors such as the retinoid-related orphan receptor

alpha (RORα) and the liver X receptors (LXRs) can reg-

ulate expression of genes involved in lipid metabolism and

also warrant closer attention for their potential role dur-

ing torpor. LXRs target genes including the apolipopro-

tein E and the ATP-binding cassette transporter AI

(ABCA1) can affect cholesterol homeostasis [45]. Plasma

and tissue cholesterol levels vary significantly during

hibernation, and LXR activity is thought to underlie this

balance [46, 47]. RORα, a nuclear receptor that can

influence circadian rhythms and metabolism through the

expression of its target genes, regulate key molecular

players involved in mammalian hibernation [48].

Interestingly, cholesterol sulfate, a RORα ligand, is

altered in hibernating ground squirrels as they undergo a

hibernation cycle [49]. Whether as an integral part of the

energy source associated with torpor, as an important

component of biological membranes at low temperatures,

or as signaling molecules with far-reaching translational

impacts, lipids are undoubtedly essential to several facets

of mammalian hibernation. Accordingly, molecules that

can impact the synthesis, degradation, or signaling

processes associated with lipids are of significant interest.

FAMILIES OF NON-CODING RNAs

Cold-associated miRNAs. MiRNAs are examples of

molecules with such ubiquitous implications. MiRNAs

are short, approximately 21 nucleotides in length, non-

coding transcripts that can bind to target mRNAs and

repress their translation. MiRNA biogenesis has been

extensively described elsewhere and will not be the scope

of this review [50]. It is estimated that expression of more

than 60% of all protein-coding genes can be regulated by

miRNAs, which highlights the far-reaching capabilities

of these molecules in modulating different cellular

processes [51, 52]. A growing body of evidence has posi-

tioned miRNAs as molecules involved in the regulation of

hypometabolic models including diapause in the flesh fly

Sarcophaga bullata [53], aestivation in the sea cucumber

Apostichopus japonicus [54], and cold hardiness in insects

[55, 56]. The freeze-tolerant wood frog Rana sylvatica

displayed elevated miR-21 levels and reduced miR-16

levels in skeletal muscle during freezing [57]. Subsequent

work in liver of frozen R. sylvatica reported elevated levels

of miR-26a, miR-126, and miR-217, three miRNAs that

can regulate PTEN expression and thus potentially con-

tribute to anti-apoptotic functions via Akt activation dur-

ing freezing [58]. Differential expression of miRNAs,

including miR-1a-1 and miR-34a, was also presented in

frozen hepatopancreas and foot muscle of the freeze-tol-

erant land snail Littorina littorea [59]. Several studies have

reported modulated miRNAs during mammalian hiber-

nation. Pioneering work on this topic demonstrated dif-

ferentially expressed miRNAs in several tissues of the

hibernating I. tridecemlineatus [60]. Subsequent reports
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on miRNA expression in different hibernating species

were presented in recent years and have contributed

markedly in positioning these molecules as important

molecular players in torpor. The little brown bat M.

lucifugus notably exhibits elevated levels of eight miRNA

species in hibernating pectoral muscle tissue [61].

Interestingly, transcript targets of these miRNAs were

shown to code for muscle-specific proteins, including

FoxO3a and SMAD7, suggesting a potential relevance for

bat muscle preservation during torpor. A follow-up study

evaluating miRNA expression in euthermic and hibernat-

ing brain of M. lucifugus also demonstrated eight overex-

pressed miRNAs with probable impact on axon guidance

and focal adhesion processes in torpor [62]. Genomic

analysis performed in the Arctic ground squirrel

Spermophilus parryii revealed numerous miRNAs such as

miR-451 and miR-486 that were differentially expressed

at different stages of hibernation when compared with

control animals [63]. While the exact role of these

miRNAs remains to be determined in torpid S. parryii,

such molecules likely impact diverse processes including

cell growth. Levels of miR-106b, a miRNA that can

influence HIF-1α expression, were also shown to be

reduced in skeletal muscle of torpid M. lucifugus and I.

tridecemlineatus [64]. A microarray-based approach that

assessed miRNA levels in the brain of euthermic and

hibernating I. tridecemlineatus revealed down-regulation

of miRNAs that were part of the miR-182 and miR-200

families of miRNAs [65]. Members of these families,

including miR-200a, miR-200b, and miR-200c, as well

as miR-182, were all involved in regulating the expression

of ubiquitin-like modifiers, which underlie cellular

response to various stresses. As evidenced by these stud-

ies, a growing list of differentially expressed miRNAs in

different animal species that can confront and survive

cold temperatures is being built. This family of cold-asso-

ciated miRNAs, loosely referred to as “CryomiRs” [4], is

likely to expand in the near future.

MicroRNAs and impact on lipid metabolism.

MiRNAs that can modulate key metabolic cascades of

hibernation such as those associated with lipid metabo-

lism are foreseen to join the list of “CryomiRs”.

Examples abound, in non-hypometabolic models, of

interactions between miRNAs and target transcripts that

code for proteins involved in lipid metabolism. For exam-

ple, miR-33b can target key enzymes involved in fatty

acid oxidation such as carnitine palmitoyltransferase 1A

and the alpha subunit of AMP kinase (AMPKα) in

human hepatic cell lines [66]. AMPKα phosphorylation

is also influenced by miR-144 and miR-451 notably via

translational regulation of key mediators in this pathway

such as MO25α and acetyl-CoA carboxylase [67]. Table 1

presents miRNAs that can target AMPK as well as

upstream regulators of this cascade. Interestingly, AMPK

and acetyl-CoA carboxylase protein and activity levels are

modulated to different extents in hibernating ground

squirrels [30, 70], which raises the question of whether or

not these miRNAs participate in such control. It is of par-

ticular interest to note that miR-144 is strongly expressed

in liver tissue of torpid S. parryii [63]. MiR-195, a

miRNA that targets fatty acid synthase (FAS) in human

osteosarcoma cells, is elevated in hibernating liver tissue

of I. tridecemlineatus [71]. The same study demonstrated

that protein levels of FAS, an enzyme involved in fatty

acid synthesis, were down-regulated under the same con-

ditions, suggesting a potential importance for the miR-

195–FAS axis in hibernating ground squirrels. As men-

tioned above, PPARγ is a key transcription factor modu-

lated in selected models of hibernation and that can reg-

ulate the expression of a plethora of target genes involved

in lipid metabolism. Numerous miRNAs can regulate the

expression of PPARγ and of genes under its control. An

overview of the potential miRNA-mediated regulatory

nodes associated with PPARγ and its target genes is pre-

sented in Fig. 1. MiR-27 and miR-130 for instance can

regulate PPARγ expression in mice and human

adipocytes, respectively [78-80]. MiR-126 also plays an

important role in PPARγ-mediated gene expression via

regulation of two PPARγ-associated genes, phos-

phatidylinositol 3-kinase (PI3K) and insulin receptor

substrate-1 (IRS1) [86, 90]. PPARα, also differentially

expressed in selected hibernators, is targeted by miR-22

in mouse cardiomyocytes [96]. Expression of the nuclear

receptor liver X receptor α (LXRα) is regulated by

miRNAs such as miR-1, miR-206, and miR-613 in

human and mouse models [97-99]. MiRNAs that can tar-

get LXRα and its target genes are presented in Fig. 2.

Interestingly and despite the relative lack of expression

data on these molecules in hibernating models, the sterol

regulatory element-binding proteins (SREBPs) tran-

scription factors are crucial regulators of lipid homeosta-

sis [111]. Multiple evidences of miRNAs that can regulate

the expression of SREBPs and their target genes have

been put forward. These interactions are summarized in

Table 2. MiR-185 and miR-342 have notably been shown

to inhibit both SREBP1 and SREBP2 expression, leading

to negative regulation of their target genes in human

Target

AMPK

CaMKK

LKB1

miRNAs

miR-33a/b, miR-144, miR-451

miR-9

miR-199a

References

[66, 67]

[68]

[69]

Table 1. MiRNA regulation of AMPK signaling.

MiRNAs with reported transcript targets related to

AMPK and upstream signaling

Note: AMPK, AMP-activated protein kinase; CaMKK, Ca2+/calmod-

ulin-dependent protein kinase kinase; LKB1, serine/threonine

kinase 11.
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prostate cancer cells [112]. MiR-33 was shown to impact

SREBP1 expression in a mouse model and that this regu-

lation had potential implications in obesity [113].

Overall, several transcripts coding for proteins involved in

lipid metabolism have been identified as miRNA targets.

Validating and understanding the relevance of these

miRNA-transcript interactions in natural models of

hypometabolism will need to be undertaken next to have

a clearer idea of the extent to which miRNAs play a role

in such species.

Long non-coding RNAs: additional “CryomiRs’’?

The surface has barely been scratched when it comes to

elucidating the impact of miRNAs in torpor, and yet

another family of non-coding RNAs emerges as another

layer of regulation; the long non-coding RNAs

(lncRNAs). LncRNAs are non-coding transcripts that

are longer than 200 nucleotides [119]. More than a thou-

sand lncRNAs have been identified to date in mammals

and other vertebrates and this number is increasing [120,

121]. Not surprisingly, the list of functions associated with

this family of molecules is also expanding. Some of the

better known functions associated with lncRNAs include

epigenetic regulation of gene expression via recruitment

of histone-modifying complexes. The lncRNA Xist can

recruit key factors that can contribute to histone methy-

Fig. 1. PPARγ and related miRNAs. MiRNA-mediated regulation of PPARγ and selected target genes. Note: C/EBPα, CCAAT/enhancer-

binding protein alpha; GLUT4, glucose transporter 4; IRS1, insulin receptor substrate-1; PI3K, phosphatidylinositol 3-kinase; PPARγ, per-

oxisome proliferator-activated receptor gamma; RXR, retinoid X receptor.

Target

SREBP1 

SREBP2 

FAS 

ACC

miRNAs

miR-33, miR-185, miR-342

miR-185, miR-342

miR-107, miR-130a, miR-195,
miR-320, miR-424

miR-144, miR-451

References

[112, 113]

[112]

[114-118]

[67]

Table 2. SREBP-associated miRNAs. MiRNAs with

reported transcript targets associated with SREBPs and

target genes

Note: SREBP, sterol regulatory element-binding protein; ACC, acetyl-

CoA carboxylase; FAS, fatty acid synthase.
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lation and ubiquitination [122]. LncRNAs, including

Evf-2, can also act as co-activators of proteins involved in

transcriptional regulation [123]. LncRNAs can even

affect the subcellular localization of proteins and influ-

ence their activity. For example, the lncRNA NRON can

affect the cytoplasm-nucleus trafficking of the NFAT

transcription factor [124]. With such diverse functions, it

is not surprising that lncRNAs can impact different cellu-

lar processes including lipid metabolism. A recent study

has highlighted a potential role for the lncRNAs colorec-

tal neoplasia differentially expressed (CRNDE) tran-

scripts in colorectal cancer cells [125]. Their findings sug-

gested that such lncRNAs could influence gene expres-

sion of key molecules involved in glucose and lipid

metabolism. Similarly, work performed in esophageal

squamous cell carcinoma identified differentially

expressed lncRNAs with the potential to regulate expres-

sion of genes implicated in lipid metabolism [126].

APOA1-AS and DYNLRB2-2 are other examples of

lncRNAs that can influence the expression of targets

involved in lipid homeostasis and metabolism [127, 128].

While the field is still in its infancy, it is reasonable to pos-

tulate that lncRNAs play an important part in regulating

key molecules involved in lipid metabolism, and other

cascades, during mammalian hibernation. Pioneering

work in M. lucifugus has revealed decreased levels of the

natural antisense long non-coding RNA HIF-1a, known

as aHIF, in torpid M. lucifugus skeletal muscle tissue when

compared with euthermic samples [64]. The authors pro-

posed a likely correlation between aHIF levels and HIF-

1a expression and suggested that the non-coding RNA

might have a significant role in influencing transcription-

al expression of HIF-1 target genes during torpor. While a

clearer knowledge of lncRNA expression and function in

mammalian hibernation remains to be performed to bet-

ter assess the relevance of these molecules in this process,

the characterized impact of lncRNAs in non-hibernating

models suggest that they will play an important role.

OUTLOOK

Natural models of hypometabolism undergo a series

of physiologic, biochemical, and molecular changes to

successfully confront environmental challenges that arise.

Several metabolic cascades are affected by this hypometa-

Fig. 2. Liver X receptors and related miRNAs. Regulation of LXR and target genes by miRNAs. Note: ABCA1, ATP-binding cassette trans-

porter AI; ABCG1, ATP-binding cassette transporter GI; LXR, liver X receptor; RXR, retinoid X receptor; SMRT, silencing mediator of

retinoic acid and thyroid hormone receptor.
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bolic state, and this review took a particular interest in

discussing the dynamics of lipid metabolism in mam-

malian hibernators as well as highlighting the potential

regulation by miRNAs of key molecular players involved

in such pathways. Looking ahead, it is possible to foresee

the need to better characterize the miRNA targets, lipid

or non-lipid related, underlying mammalian hibernation.

In addition, the identification and quantification of addi-

tional non-coding RNAs, such as lncRNAs, with poten-

tial implications in this process will be of uttermost

importance. Ultimately, the far-reaching implications of

non-coding RNAs in mammalian hibernation will be elu-

cidated.

This work was supported by a Discovery Grant from

the Natural Sciences and Engineering Research Council

of Canada awarded to P. J. M.
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