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Fig. S1. Dependence of the electric current 

pump 0 pumpj e J  on the dimensionless proton motive force 

+H
pdf RT   (left) and time (right). Full lines, Eq. (3). Doted lines, Eq. (6).  
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Fig. S2. Kinetics of generation of pdf (points, left ordinate, mV) and electric current pumpj  (line, right ordinate, pA) 

calculated by Eq. (6) 
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Calculations of the rate constants for proton removal from region a 

 

The rate constants in Eq. (9) are 

 pK1 1
,off,sp 10 aU RT

a c ck e      , (S1) 

 
,off,B ,off ,B Ba a

k c    , (S2) 

where [1],   is the bimolecular rate constant for proton transfer from the sur-

face to the bulk and  is the  concentration. In order to estimate this constant, we will write 

down the equilibrium condition for the proton exchange reaction between the surface and the 

mobile buffer [2], 

10 psc 
,off ,Ba 

B
c  B

 BpK pK
,on,BH,off ,B

10 a
aa 

  , (S3) 

where 

  pK ln10a U RT  (S4) 

is an apparent  of the surface equal to 2.2-6.9 at pK  5 16U   RT  [1]. Assuming  

 ,on,BH A BH2a dN D    (S5) 

(we introduced Avogadro number  in order to express the constant in units of M–1s–1), 

nm (two H bonds), and taking the mobile buffer parameters as follows: the diffusion co-

efficient  [2] and the concentration

AN

0.6d 
7 2

BH 10 cm sD  1 1 BB
0.5c c   0.5 mM , we obtain from 

(S5) and (S2) 

 7 1
,on,BH 2.3 10 M sa

1     (S6) 

and 

 BpK pK4 1

,off,B
10 s 10 a

a
k 

  , (S7) 

which is of the same order of magnitude as (S1). For instance, at an intermediate value of the 

barrier, U = 10 RT, they are both 6 15 10 s . The total rate constant for proton depopulation of the 

surface, Eq. (9), can be less than (or on the order of) the rate of the initial pmf increase, in which 

case appreciable local pH changes should be expected at low pmf. 

                                                 
1 Mobile buffer concentration is assumed to be much less than the total buffer concentration, the latter being usually 

about 10 to 100 mM. 
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Mathematical formulation of the problem and its solution 

 

The membrane is assumed to attract protons. The potential well at the membrane surface (region 

a) has width d and depth U. The bulk space outside it is denoted region b. The free and bound 

proton concentrations in these regions as functions of time and the space coordinate normal to 

the surface are represented in the form 

    + +,H ,eq,Ha a
t    S t , (S8) 

    + +,H ,eq,H
,

b b
c z t c N z t  , , (S9) 

    ,BH ,eq,BH,b bc z t c N z  , t , (S10) 

where2  

 + +,H ,Ha a
c d   (S11) 

is the surface concentration,  and  stand for the volume concentrations (in M), S and N 

are the non-equilibrium proton concentrations created by the proton pumping. The medium in 

general contains both non-equilibrium free protons H+ and non-equilibrium bound protons BH, 

where B stands for the buffer. We will not consider these two non-equilibrium

+,Ha
c +,Hb

c

3 proton pools si-

multaneously since it would be a significant yet unnecessary complication. Instead, we assume 

that H+ can be ignored when BH is present in physiological concentrations of 1-100 mM. Thus, 

the unknown functions in the problem are (S8) and either (S9) or (S10) plus dimensionless .  

The equilibrium concentrations obey the following relations similar to (S11) and (8): 

 +,eq,H ,eq,Ha a
c + d  , (S12) 

 + +,eq,H ,eq,H

U RT

a b
c c e , (S13) 

 . (S14) + + + 0,B ,eq,BH,eq,H 0,H ,eq,H ba b
L c L c  

Equation (S12) is merely the definition of the surface concentration. Equation (S13) reflects the 

increase of the surface concentration due to the attraction. Equations (S14) state that the free and 

bound proton concentrations in the bulk are proportional to each other and to the surface concen-

tration of the free protons (BH is assumed to be unable to penetrate into region a),  and  

being the equilibrium constants for the free and bound protons with dimension of length. Com-

bining these equations, we obtain  

+0,H
L 0,BL

                                                 
2 The same notation N(z,t)  is used in Eqs. (S9) and (S10), which does not lead to confusion since either free or 

bound protons are accounted for in the bulk, see below. 
3 The equilibrium protons, neither free nor bound, cannot be ignored since they both are responsible for the pH of 

the solution. 
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  +0,H
expL d U RT , (S15) 

 
+

+

B,eq,H
0,B 0,H

B

b
c K

L L
c


 , (S16) 

where  

    B BH B
,c c z t c z t  ,  (S17) 

is the total concentration of the buffer,  

  (S18) BpK
B 10 MK 

is the equilibrium constant of the buffer, and  

  (S19) ,eq
+

pH

,eq,H
10 Mb

b
c 

is the equilibrium concentration of the free protons in the bulk. The length scale of (S15) or 

(S16) (shortly ) combined with the respective diffusion coefficients (shortly ) provides for 

a time scale of 

0L bD

  + +

2

0,H 0,H ,Hb
t L D +  (S20) 

or 

  2

0,B 0,B ,BHbt L D  (S21) 

(shortly ) for dissipation of the non-equilibrium free or bound protons in the bulk [1-3], which 

should be compared with the proton dwell time at the surface, 

0t

 . (S22) 1
dw ,offak  

Here, 

 ,off ,off,sp ,off,Ba a a
k k k    (S23) 

is the rate with which the protons leave region a either spontaneously or due to collisions of B   

with the surface. The dwell time is the time required for a pumped proton at the P side to leave 

the surface for the first time. If the diffusion is fast, so that 0 dt w  , the proton released will 

rapidly escape to the bulk with no chance to return back to the surface. However, typically, the 

situation is just opposite: after leaving the surface, the proton stays long next to it and moves 

back and forth4 making 

 ,off 0 1ak t  

                                                

 (S24) 

jumps before the full equilibration with the bulk is reached. In other words, due to slow equili-

bration with the bulk, the non-equilibrium protons in the bulk create back flow to the surface, 

 
4 We called this the fast-exchange limit, as opposed to the slow-exchange one,  < 1 [2]. 
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thereby retarding the decay of the surface population. The back flow largely compensates the 

forth one, so that quasi-equilibrium is established between the surface and bulk non-equilibrium 

proton concentrations at every moment of time similar to (S14), 

    0 0,S t L N t . (S25) 

Similar considerations apply to the N side as well5 where the proton population depleted due to 

the pumping is slowly restored because of slow diffusion from the bulk towards the surface.  

The above arguments imply that transient non-equilibrium proton populations can be cre-

ated by proton pumping and maintained for a while at both sides of the membrane. The obvious 

conditions for this to occur are that the pumping of local pH changes in regions a, first, be faster 

than the buildup of  because otherwise the pumps will stop working before any significant 

 is created, and second, be faster than the proton dissipation along the two above-mentioned 

pathways, i.e., the removal of the non-equilibrium protons from region a with the rate  and 

their ultimate escape to the bulk with the rate 

pH

,offak

1
0t
  preventing their return to the surface. In order 

to put quantitative criteria, we introduce characteristic rates 1
,pHa

  and   [to be specified later, 

see Eqs. 

1


pH(S66) and (S69)] that are required for the pumps to change   and by unity. The 

pumping will be efficient in producing local pH changes when, first, 



pH  increases faster than 

, 

 1
,pHa

1 
   , (S26) 

and second, faster than at least one of the above two dissipation rates,  and . In the fast-

exchange limit 

,offak 1
0t


(S24), two scenarios are conceivable, 

 1
,pH ,off 0a ak 1t     (S27) 

and 

 1
,off ,pH 0a ak 1t    , (S28) 

which correspond to mechanisms 1 and 2 mentioned in the main text. Mechanism 1 is the most 

efficient due to higher proton pumping rate. However, as will be seen later, based on estimates of 

the parameters, it is expected to operate only in strongly basic media whereas mechanism 2 is not 

subject to such a restriction.  

After these preliminary considerations we turn to the derivation and solution of the 

basic equations. The proton diffusion in the bulk is described by the equation 

                                                 
5 We tacitly assume that parameters 

0L , 
bD , , and hence  and 

,offak 0t  , are identical at both sides of the membrane. 
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   2

2

, ,
b

N z t N z t
D

t z

 


 
, (S29) 

where either free or bound protons are implied depending on the solution. The boundary condi-

tion at infinity is 

  ,N z t  0 . (S30) 

At the membrane surface, the proton pumping and the proton flow between the surface and the 

bulk (protons per second) result in changes of the total number of protons in region a, 

 
     memb A pump memb A

0

,
b

z

N z t
S N D J t S N S t

z



  


 , (S31) 

where  and the meaning of the terms are explained below. Since the pumps transfer proton 

numbers, 

 + +A memb A,H ,H ,Haa a
n V N c S N +a

   , (S32) 

rather than concentrations  in volume +,Ha
c membaV S d , it was convenient for us to write (S31) in 

terms of proton numbers. Now, dividing it by , we obtain a more compact equation memb AS N

 
     pump

memb A0

,
b

z

J tN z t
D

z S N



 


S t . (S33) 

The first term is the proton flow due to gradient of the proton concentration in the bulk. The sec-

ond term is the proton pumping due to pump current pumpJ  defined in the main text as a function 

of pmf [see Eq. (6)], which in turn depends on t. For the sake of argument, we consider cyto-

chrome-c-oxidase as a model proton pump. Then, 1
2   for the P side and –1 for the N side be-

cause only one half of the protons uptaken at the N side reach the P side;  is the surface of 

the membrane. In the right-hand side, we neglected the term due to recombination of H

membS

  with 

OH  or dissociation of water because the assumed attraction of protons implies the reduced con-

centration of hydroxyl, so that the hydroxyl contribution is small in neutral and acidic media



6. 

It is useful to define the total number of protons in the bulk region, 

 . (S34)    tot

0

,N t N z t dz


 

The conservation of the total number of protons is easy to derive from Eqs. (S29), (S30), and 

(S33), 

      pump
tot

memb A

J td
N t S t

dt S N
   


. (S35) 

                                                 
6 However, this is not true in alkaline media. 
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This relation will be used later. 

Following our previous approach [2, 4], we approximate the first term in Eq. (S33) by the 

so-called Langmuir kinetics, 

 
     +,off 0 ,H

0

,
0,b a b a

z

N z t
D k L c t

z



t   

, (S36) 

which represents the net proton flow from the bulk to the surface as a difference between the in-

coming and outgoing proton fluxes, both being proportional to the respective proton concentra-

tions (  is concentration of either free or bound protons in the bulk). In equilibrium, the flow 

vanishes according to 

bc

(S14). Inserting this into (S33) and using (S8)-(S10), we obtain 

        pump
,off 0

memb A

0,a

J t
k L N t S t S t

S N


    

 . (S37) 

At this junction, it is worthwhile to comment on the application of the fast-exchange limit (S24). 

In this limit, both incoming and outgoing fluxes in the right-hand side of (S36) are large whereas 

their difference is small, so that relation (S25) is approximately fulfilled. However, their small 

difference must be retained in Eq. (S33) because it is the slow diffusion in the bulk that is re-

sponsible for the slow decay of the surface population. The diffusion equation (S29) with bound-

ary conditions (S30), (S33) without the pump term but with the initial condition  0S 1 , was 

solved in our BJ publication [2]; we will denote it  BJS t . A more general problem, i.e., without 

invoking the fast-exchange approximation, but in the steady-state case, was also solved in our 

JCP publication [4]. Here, we are interested to find a solution of the time-dependent problem in 

the general case because we need to consider short times after the proton pumping starts, at 

which no back flow is yet developed. We will show how our present solution denoted as  JCPS t  

is related to .   BJS t

Thus, following our method [2, 5], we apply the Laplace transform7, 

  
0

tf f t e dt
 

   , (S38) 

to Eqs. (S29), (S34), (S35), and (S37): 

    
2

2b

d
D N z N

dz    z

dz

                                                

, (S39) 

 , (S40)  tot,

0

N N z


  

 
7 The functions f and f(t) are called “the Laplace transform” and “the original”, respectively. 
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   pump,
tot,

memb A

J
N S

S N
  

 


 , (S41) 

  pump,
,off 0,B

memb A

0a

J
S k L N

S N
S    


  


 . (S42) 

The general solution to Eq. (S39) obeying condition (S30) is 

      0 exp bN z N z D    . (S43) 

Inserting this into Eq. (S40), we obtain 

 
   0

tot,

0

0

b

N L N
N

D t
 

  
0 . (S44) 

Thus, we have three equations (S41), (S42), and (S44) for three unknowns, from which we find 

 

1

pump, pump,0 JCP

memb A memb A0

J Jt
S

S N S Nt


 

     




  


 
S
 , (S45) 

where the right-hand identity is the definition of . In the fast-exchange limit JCPS (S24) it turns 

into 

   1
BJ

0S t


    , (S46) 

which was obtained in [2]. Finally, we have to perform the inverse Laplace transform [6], 

   1

2

a i
t

a i

f t f e
i

 



 

d 
  , (S47) 

where a is an arbitrary positive number. The product of the Laplace transforms in (S45) turns 

into the convolution of the originals [6], 

      JCP
1 pump 1 1

memb A pump 0

t

S t S t t J t dt
S N


 

   , (S48) 

where the dimensionless current has been introduced, 

    pump pump pumpJ t J  t . (S49) 

The other function in the integrand is 

  JCP JCP1

2

a i
t

a i

S t S e d
i

 

 

  
 


. (S50) 

This function represents the solution to Eq. (S37) with no pump but with the initial condition 

  JCP 0S 1 . (S51) 

It is easy to show that 
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1

0JCP

0

t
S

t


 

   


 


 
  (S52) 

[see Eq. (S45)] is regular everywhere in the complex plane of   except for a cut along the nega-

tive real half-axis. To be more specific, we make the replacements  

 , (S53) 1
,off ,off,ak t k      a

so that 

  
1

JCP 1

2

a i

a i

S t e d
i

 

 

 
    

 
 

  
. (S54) 

We draw the cut along the negative real half-axis and put 

 ,ise       . (S55) 

The denominator in the integrand of (S54) vanishes only at Re 0  , which is obtained by 

solving a quadratic equation. However, according to (S55),  

  1
2Re cos 0s   , (S56) 

so that no other singularities are present in addition to the cut. Then, the integration contour can 

be displaced to the left to circumvent the cut, 

     
1 10

JCP

0

1 1

2 2
s si s i s

S t s e ds s e ds
i ii s i s

 
 



   
                 

    
    

 . (S57) 

A simple calculation, after replacement 2s x , gives 

  
 

2JCP
22 2

0

2

1

xdx
S t e

x x




 
 

 
. (S58) 

This expression is suitable when  and 1  1  , i.e., when mechanism 1 is operating. In par-

ticular, when , the integral comes from a vicinity of 1  1x  . Replacing the integration vari-

able,  1 2x y   , and extending integration over  from y   to , results in 

  JCP
2

1

1

dy
S t e e

y


 




    


. (S59) 

This result is easy to understand. In the original Eq. (S37), the incoming flux is absent because 

 means rapid dissipation (due to small ) of the non-equilibrium protons in the bulk, and 

no pump is working since initial condition 

1  0t

(S51) is assumed instead. Then, the exponential decay 

(S59) is immediately obtained. 

In the opposite case, , we rewrite Eq. 1  (S58) by replacing x  with x   and   with 

0t t     , which gives 
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  
 

2JCP
22 1 2

00

2
,

1

xdx t
S t e

tx x





 

 
  

 
. (S60) 

In particular, in the fast-exchange limit of Eq. (S24), this turns into the expression 

   2BJ
2

0

2

1
xdx

S t e
x




 


 (S61) 

obtained in [2], which can be also derived by taking inverse Laplace transform of Eq. (S46). It is 

suitable for treating mechanism 2. 

Now we are in position to calculate the local time-dependent variations of pH within re-

gion a. According to Eqs. (19), (S8), and (S11) they are given by 

  
 + ,HpH

ln10
a

a

q t
t   , (S62) 

where  

  
   +

+

+

,H

,H
,eq,H

ln 1a

a
a

t S t
q t

RT

 
  
  




 (S63) 

is the change of the local dimensionless chemical potential with respect to its equilibrium value. 

Substituting (S48) for , we obtain S

      +

JCP
1 pump 1 1,H

,pH 0

1
ln 1

t

a
a

q t S t t J t dt
 

     
    (S64) 

for the N side and  

      +

JCP
1 pump 1 1,H

,pH 0

1
ln 1

2

t

a
a

q t S t t J t dt
 

     
  

+a

 (S65) 

for the P-side, where 

  (S66) +,pH pump ,pH pump,eq,H ,eq,H
,a aa

n n        

are the timescale for proton pumping at two sides of the membrane mentioned earlier and JCPS   

or  are  with  or JCPS  JCPS 0 0, ,t t    0 ,t  . 

The trans-membrane difference of the electric potential obeys the equation 

 0
pump

memb memb

,e e

e
J

C S
     . (S67) 

Introducing the dimensionless potential, 

 , e
e

FF

RT RT


    , (S68) 

and the time-scale for  generation, 
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 1
pumpe


    , (S69) 

we obtain the following equation describing the kinetics of generation of the trans-membrane 

potential difference: 

    1
pumpt J

    t  (S70) 

or, in the integral form, 

      1
pump 1 1

0

0
t

t J
       t dt . (S71) 

Using Eqs. (1), (2), (7), and (S68), the dimensionless current (S49) as function of the pmf com-

ponents is rewritten as  

  
     + +

pump

,H ,H

1

1 exp 6
a a

J t
t q t q t


       

 . (S72) 

Thus, we have three non-linear integral equations (S64), (S65), and (S71) to find three 

unknown functions ,  +,Ha
q t  +,Ha

q t , and  t . If the pump current  was a known 

function of time, the above equations would provide these functions. This implies that the prob-

lem could be solved by iterations. Namely, assuming some initial (zero-order) iteration, say,  

 pumpJ t

        + +

1

,H ,H
0, 0, ln 1

a a
q t q t t t

        , (S73) 

we calculate step-by-step the 1st, the 2nd, etc. iterations by inserting the current found from Eq. 

(S72) at the previous step into Eqs. (S64), (S65), and (S71). Convergence of the iterations is 

shown in Figs. S3 and S4. A significant problem with this method is that  can occur at 

the N side at an intermediate iteration because of a bad selection of the initial iteration, making 

 complex, which prevents developing subsequent iterations. The natural idea to introduce 

buffering function due to hydroxyl does not work, unfortunately, because our method is not ap-

plicable. We overcame this difficulty by dividing 

+,H
0

a
 

+,Ha
q

+,eq,Ha
S   (which is negative at the N side) by 

its maximum value (and subtracting additional 0.1 to avoid occasional zero). However, often this 

method did not work, e.g., at pH > 7.2 or B 1 mMc  . Therefore we also employed a second 

method where the unknown functions are propagated in small time steps starting at t = 0. 

Equation (S71) can be rewritten alternatively in the form 

          101
pump 1 1

0

0 ln 1
t

tt e J 
 t dt

 
      

 
  , (S74) 

which can be used to control the accuracy of the calculations.  
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Calculation of the global pH 

 

In the absence of the surface effect, and assuming fast equilibration of the protons pumped with 

the bulk solution, we can calculate the kinetics of generation of the global pH. The concentra-

tions of free and bound protons are changing with time according to the equations 

 +

pump
BHH OH

A pump

J
c c c

V N
     

 


   , (S75) 

 +

pump
BHH OH

A pump2

J
c c c

V N
    

 


   , (S76) 

 1
pump, pumpJ

    , (S77) 

 
+ +

pump

H H

1

1 exp 6
J

q q


       
 , (S78) 

where  for membrane M and 31 mV V    31 m ,V V      for membrane B. At every mo-

ment of time, the concentrations of bound protons and hydroxyl obey the conditions of thermo-

dynamic equilibrium, 

 
 

+ +

1 2

B
BH B OH

H H

0.1 M
1 ,

K
c c c

c c



  

    
 

. (S79) 

Inserting this into Eqs. (S75) and (S76) gives 

 
   + +

+ +

pump pump

H H
A pump A pumpH H

,
2

J J
c c

V N c V N c
   

      

 
  , (S80) 

where the buffering function is 

  
 

+

+
+

2

B B
2H

H BH

0.1 M
1

c K
c

c c K

 
       

. (S81) 

We divide Eqs. (S80) by equilibrium concentrations  and introduce the following defini-

tions: 

+eq,H
c

  +

+

+

H
H

eq,H

ln ln10 pH
c

q
c

 
    
 
 

, (S82) 

 +pH A pumpeq,H
Vc N   . (S83) 

Then, 

 + +

pump pump

H H
pH p

,
2

J J
q q   

H     

 
 


. (S84) 
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Thus, we have to solve three equations (S77) and (S84) with the initial conditions  

 + +H H
(0) (0) (0) 0q q     . (S85) 

The results are shown in Figs. S7-S9. 
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Fig. S3. Convergence of the iterations for membrane M. Shown are the 3rd (red), 4th (green), and 5th (blue) iterations 
in pHa (1) and pHa (2). The final iteration is shown in Fig. 2. 
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Fig. S4. Convergence of the iterations for membrane M. Shown are the 3rd (red), 4th (green), and 5th (blue) iterations 
in j (1) and  (2).  



 

 

Fig. S5. Kinetics of pHa (line 1), pHa  (line 2), and pmf (line 3) in membrane B at . 8U RT

 

Fig. S6. Kinetics of pHa (line 1), pHa  (line 2), and pmf (line 3) in membrane B at . 12U R T
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Fig. S7. Kinetics of generation of global pH  (line 1), pH  (line 2), and pmf (line 3) in membrane M. Buffer con-

centration is 100 mM. 
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Fig. S8. Same as Fig. S7, buffer concentration is 20 mM. 

 
Fig. S9. Same as Fig. S7, buffer concentration is 8 mM. 
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Fig. S 10. Dependence of maximum pHa  (1), minimum pHa  (2), relaxation time  (3) upon free-buffer concen-

tration (3) for mitochondrial membrane.

0t
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Table S1. Calculated time parameters (mks) for membrane B with various barriers 

U RT 8 10 12 

1
,offak   0.02 0.1 1 

0t  0.04 0.7 40 

0t  300 104 106 

  20 20 20 

,pHa  1 10 70 
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