
Three classes of small regulatory RNAs have been

described in metazoans: microRNAs (miRNAs), small

interfering RNAs (siRNAs) and Piwi-interacting RNAs

(piRNAs). All these small RNAs interact with effector

proteins (members of the Ago protein subfamily for

miRNAs and siRNAs, members of the Piwi protein sub-

family for piRNAs; these two protein subfamilies have a

very similar domain architecture, but they can be easily

discriminated based on their sequence). Guiding these

effector proteins to specific targets, they generally act as

repressors of gene expression (see [1] for an extensive

review): miRNAs in metazoans typically trigger degrada-

tion and translation inhibition of target mRNAs; siRNAs

guide the endonucleolytic cleavage of transcripts from

repeated and non-repeated sequences (a process called

“RNA interference”, RNAi); and piRNAs are necessary

for gametogenesis (in particular, transposons are often

derepressed in the germ line of mutants of the piRNA

pathway).

These classes not only differ by their function, but

also by their biogenesis: while most miRNAs are matured

by two endonucleases of the RNase III family (Drosha

and Dicer) from stem-loop-folded precursors, siRNAs

are generated by Dicer-catalyzed cleavage of long dou-

ble-stranded RNAs (dsRNA), and piRNAs seem to

derive from single-stranded precursors matured in an

RNase III-independent manner [1].

In terms of diversity, small regulatory RNAs consti-

tute a major class of gene regulators. miRNAs are only half

as diverse as transcription factors and more diverse than

RNA-binding proteins (Fig. 1a), with a few hundreds of

miRNA genes in a typical metazoan genome. A unified

database has been created to store miRNA sequences, as

well as various information regarding their genomic

organization, expression level, and predicted targets: that

database, called miRBase (http://microrna.sanger.ac.uk/

sequences/), is updated approximately twice a year with

novel miRNAs [2]. piRNAs and endogenous siRNAs are

incomparably more diverse, with millions of reported

piRNA species and tens of thousands of reported siRNA

species in the analyzed model organisms.

Not only small regulatory RNAs are very diverse in

sequence, but they are also poorly specific: the main

determinant of miRNA and siRNA targets is the “seed”

(nt 2-7 of the small RNA, counted from the 5′ end),

which has to be perfectly complementary to a target RNA

for the target to be repressed, and affected genes some-

times even exhibit seed match imperfections [3-7]. Such

a short binding site is very frequent in transcriptomes –

even when only conserved miRNA seed matches are con-

sidered, more than 60% of human coding genes are pre-

dicted to be targeted by miRNAs [8].

miRNA and siRNA targets are repressed by different

mechanisms in animals, depending on the extent of the

complementarity between the small RNA and its target,

as well as on the identity of the effector Ago protein

bound to the small RNA: when the Ago protein possesses
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an endonucleolytic site and when the two RNAs are per-

fectly paired in the center of the duplex, the target is usu-

ally cleaved [9-12]. Additional conditions may apply, as

has been shown in plants (reviewed in [13]).

In this review, we will focus on a few questions relat-

ed to the quantitative analysis of the properties of small

RNAs. Measuring natural phenomena is at the core of

scientific practice, and several aspects of small RNA biol-

ogy (their genomic organization, their mode of action,

and their proposed biological roles) raise original and

interesting questions on quantification methods, on the

significance of their numerical outputs, and on the imple-

mentation of traditional statistical methods.

DEFINITION OF SMALL RNA REPERTOIRES

DEPENDS ON DETECTION SENSITIVITY

miRNA vs. miRNA*: an artifact of low coverage?

Most miRNAs are generated by the cleavage of a pre-

miRNA hairpin by the Dicer endonuclease. That reaction

liberates a short RNA duplex, where the miRNA is paired

to another small RNA, named the “miRNA*”. The

duplex is then loaded on a protein of the Ago subfamily

and is subsequently unwound [28-32]. One strand

remains stably associated to the Ago protein (that strand

is called the “guide strand”), while the other one (“pas-

senger strand”) is discarded and rapidly degraded.

Fig. 1. Diversity of small regulatory RNAs in metazoans. a) Number of known miRNAs and miRNA families (according to miRBase, release

19 [2]), transcription factor genes (according to the DBD database, release 2.0 [14]) and RNA-binding proteins (according to the RBPDP

database, release 1.3 [15]) in three model organisms. The number of miRNA families is indicated by a dashed white line. Members of a miRNA

family share the same seed, and hence they can target the same genes (actual redundancy between family members depends on the similarity

of their expression pattern and on the contribution of non-seed sequence to target silencing). The redundancy rate between transcription fac-

tors or between RNA-binding proteins is unknown. b) Number of Drosophila ovarian piRNA reads and number of unique Drosophila ovarian

piRNA sequences deposited at the NCBI GEO database from 2007 to the Autumn 2012. This chart summarizes sequence counts from wild-

type or heterozygous Drosophila ovaries, or from a cultured cell line derived from the ovary soma (untreated or treated with control, extrage-

nomic siRNAs): GEO data series GSE9138 [16], GSE6734 [17], GSE13081 [18], GSE15186 [19], GSE15137 [20], GSE24108 [21],

GSE22067 [22], GSE26407 [23], GSE30088 [24], GSE30955, GSE34728, GSE34506 [25], GSE38728 [26] and GSE38089 [27]. The dashed

line indicates the total number of deposited small RNA reads from Drosophila ovarian samples. For the datasets where piRNAs were not puri-

fied by immunoprecipitation of Piwi proteins, the pool of piRNAs was approximated by the population of 23-29-mers in the small RNA

library.
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Loading of a miRNA/miRNA* duplex on an Ago protein

is usually asymmetric, with the strand whose 5′ end is less

stably paired being preferentially selected as the guide

strand [33, 34]: that small RNA is then strongly stabilized

relatively to the other strand.

That feature of miRNA biogenesis explains why one

strand (the miRNA) is usually more abundant than the

other strand (the miRNA*) at steady state. When the vari-

ety of miRNAs was first described, the miRNA* usually

escaped detection by cloning or Northern blot [35-37],

and its existence was only proven on a poorly asymmetric

miRNA/miRNA* duplex (worm miR-56 [36]). With the

advent of deep sequencing, which is sensitive enough to

capture both miRNA and miRNA* sequences in samples

where they are reasonably expressed [38], the distinction

between miRNAs and miRNA*s turned from qualitative

(one strand was observed and not the other) to quantita-

tive (the miRNA is the more abundant strand, the

miRNA* is the less abundant strand).

Investigation of a large variety of biological samples

then revealed that miRNA/miRNA* ratios could vary

greatly across tissues and species, sometimes to the point

that the miRNA* can be more abundant than its miRNA

in some samples [39-42]. Together with the observation

that miRNA* sequence is often under selective pressure

[43] and that miRNA* can be selectively loaded on a spe-

cific Ago effector [44-46], this notion led to a fundamen-

tal redefinition of miRNAs: there is probably no qualita-

tive difference between miRNAs and miRNA*s, and both

strands should probably be considered functional – the

latest releases of miRBase no longer distinguish miRNAs

from miRNA*s.

Definition of the piRNA and siRNA pool is sequencing

depth-dependent. piRNAs and siRNAs are much more

diverse in sequence than miRNAs. But each individual

piRNA and siRNA tends to be poorly expressed: in a

deep-sequencing library containing millions of piRNA

reads (or thousands of siRNA reads), most sequences are

usually read only once; replicating the library will, most

probably, not detect the same set of low-abundance RNA

species. After several years of investigation, and tens of

millions of sequenced small RNAs, the complete pool of

Drosophila ovary piRNAs is certainly not yet known: the

number of detected piRNA species does not seem to be

reaching a plateau (Fig. 1b).

While piRNAs are mostly expressed in gonads,

siRNAs are detected in various organs [47-52]. They orig-

inate from specific loci, whose transcripts can form

monomolecular or bimolecular double-stranded RNA

(dsRNA), and it is believed that they are generated by the

cleavage of these double-stranded RNAs by Dicer. The

resulting pools of siRNAs are highly diverse, covering the

sequence of the double-stranded precursor.

Consequently, recognition of the existence of most

piRNAs and siRNAs depends heavily on sequencing

depth. Attempts to inventory piRNAs [53] are probably of

little use currently, as the list of existing piRNAs is not

expected to stabilize as fast as the list of existing miRNAs.

The overwhelming diversity of piRNAs and siRNAs

exceeds the number of known genes (including transpos-

able elements) by several orders of magnitude. This situa-

tion is probably unique in biology, with regulatory mole-

cules being much more diverse than their potential tar-

gets. In the case of siRNAs, it is clear that genes can be

repressed by endogenous siRNAs and every individual

siRNA probably contributes to the repression of comple-

mentary RNAs [43, 52]. The actual mode of action of

piRNAs is much less obvious. One possibility is that

piRNAs really only target transposons and other genes,

and numerous distinct piRNAs interact with each target.

Another possibility is that piRNAs do not target genes,

but genomic sequences per se; from this point of view,

each individual piRNA would target its own genomic

locus (as well as homologous sequences if it can work in

trans). Such a function could explain why the location of

piRNA clusters tends to be conserved while their

sequence is poorly conserved [54, 55].

GENOMIC ANNOTATION OF SMALL RNA

GENES REVEALS GREAT HETEROGENEITY

IN THEIR ABUNDANCE AND DIVERSITY

miRNA abundance cannot be predicted from their

genomic organization. Many miRNA genes in metazoans

are hosted in coding genes (either in their introns or in

their exons), and most frequently in the sense orientation

(some miRNA genes are located in the overlap of a

sense/anti-sense gene pair, hence they map on pre-

mRNAs both in the sense and the anti-sense orientation)

(Fig. 2a; see color insert). Pre-miRNA hairpins falling

outside annotated pre-mRNAs are usually named “inter-

genic”, even though, strictly speaking, the pre-miRNA is

located in a gene (the miRNA gene), hence it is not inter-

genic – “intergenic” tends to be used as a synonym of

“inter-coding genes”. While it was generally assumed that

intronic miRNAs are co-transcribed with their host gene,

some exceptions exist, where the intronic miRNA has its

own promoter, located in the intron of the host gene [56].

Even when a miRNA is co-transcribed with a host

gene, their expression levels do not necessarily correlate:

in the past years, several mechanisms of post-transcrip-

tional regulation of miRNA expression have been

described. The Lin28 protein appears to regulate both

Drosha and Dicer-catalyzed processing of specific

miRNA precursors [57-60]. The exact mechanism was

initially disputed; though it is formally possible that Lin28

also has alternative activities, at least it is clear that mam-

malian Lin28 recruits the poly(U) polymerase Tut4 (and

its close homolog, Tut7) on the pre-let-7 pre-miRNA,

and poly-uridylation of the pre-miRNA inhibits its cleav-

age by Dicer [61-63]. Polymerase Pup-2 appears to exert
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a similar Lin28-guided repressive action on let-7 biogen-

esis in C. elegans [64]. Reciprocally, Tut4 (as well as other

poly(U) polymerases) can also mono-uridylate pre-

miRNAs when Lin28 is absent: addition of a single uri-

dine on the 3′ end of a pre-miRNA can facilitate its pro-

cessing by Dicer in specific circumstances, hence pro-

moting miRNA maturation [65].

Another post-transcriptional phenomenon can dis-

tort the correlation between miRNA and host gene

mRNA abundances: regulated stabilization or destabi-

lization of mature miRNAs. Addition of adenosines at the

3′ end of miR-122 by the mammalian poly(A) polymerase

Gld-2 stabilizes that miRNA, while other miRNAs

appear to be unaffected [66]. Other miRNAs could also

be adenylated by that enzyme, though their abundance

does not seem to be sensitive to their adenylation status –

rather, 3′ adenylation may affect their specific activity

[67]. Reciprocally in Drosophila, the addition of uridines

and adenosines at the 3′ end of miRNAs triggers their

degradation by a 3′ to 5′ exonuclease. These miRNA

“tailing” and “trimming” reactions are regulated by a

combination of factors: they only affect the small RNAs

loaded on the Ago2 effector protein, and only when they

encounter a perfectly (or almost perfectly) matched RNA

target [68]. Another regulated miRNA-degrading activity

has been reported in worms, where exonuclease Xrn-2-

catalyzed miRNA turnover is inhibited by the presence of

target mRNAs for the miRNA [69]. Finally, human

polynucleotide phosphorylase (an exonuclease) is also

able to degrade specifically some miRNAs in cultured

cells, suggesting a function in the regulation of miRNA

abundance [70].

Genome mapping statistics of piRNAs and siRNAs.

piRNAs are often presented as transposon-matching

small RNAs; while there is indeed enrichment for trans-

posable element sequences in piRNA populations, a large

subset of piRNAs map on non-repeated sequences (Fig.

2b; see color insert). In worms it is even more the case,

where a single transposon (Tc3) appears to be regulated

by piRNAs [71, 72].

Transposons are de-repressed in mutants for the

piRNA pathway in fly [73, 74] and in mouse [75-77]. Yet

no transposon de-repression was observed in zebrafish

Danio rerio; it has been proposed that the loss of germ cells

in the analyzed mutant may have complicated the analysis

[78]. The fact that piRNAs frequently match transposon

sequences, together with their apparent role in transposon

repression in fly and in mouse, may suggest that their main

function is the silencing of these mutagenic, mobile ele-

ments. Several observations also suggested that piRNAs

could repress non-transposable genes [79, 80], though it

remains to be established why these effects are specific to

just a few target genes. The diversity of detected piRNAs,

as well as the apparent tolerance of these phenomena to

mismatches between piRNAs and their targets, would

rather predict that most genes would be affected.

Endogenous siRNAs also frequently match trans-

posons, as well as other repeated sequences (such as satel-

lites and other tandem repeats) and non-repeated genes

[47-50, 52, 81]. While piRNAs are mostly restricted to

the gonads, siRNAs are detected in non-gonadal tissues

[47, 48, 51, 52]. If transposon silencing were the only bio-

logical role of piRNAs, piRNAs could appear dispensable

(piRNA-repressed transposons could be silenced by

siRNAs, and the whole piRNA pathway would be use-

less). Several recent findings shed a new light on the pos-

sible reasons for the coexistence of the two pathways: in

worms, both systems cooperate, with piRNAs triggering

the generation of siRNAs specific for the piRNA target

[82], then promoting a piRNA-independent, nuclear

siRNA-dependent repression [83]. In flies, the situation

appears to be symmetrical: after introduction in the

genome, the Penelope transposon is first silenced by

siRNAs. RNAi-based repression appears to be incom-

plete, and a transposon copy ends up landing in a piRNA

cluster, thus promoting a piRNA-based, more efficient

repression [84].

ASSESSING SMALL RNA

QUANTIFICATION METHODS

Several methods are currently used for the quantifi-

cation of small RNAs. While amplification-free methods

(such as Northern blotting and microarrays) tend to be

less sensitive than PCR-based assays (such as qRT-PCR

and deep-sequencing), they are also less prone to PCR

biases that can affect the reliability of measured small

RNA abundances.

Northern blotting: an amplification-free procedure.

Northern blot analysis is a poorly sensitive and low-

throughput technique, but with a very precise outcome.

This technique involves size-separation of RNA mole-

cules followed by transfer and cross-linking to a nylon

membrane. RNAs of interest are then detected by

hybridization with labeled complementary nucleic acid

probes (when the probe is in large excess, the intensity of

the radioactive signal is proportional to the amount of

RNA on the membrane). When calibrated with synthetic

RNA oligonucleotides with the same sequence as the

detected small RNA, Northern blotting allows a straight-

forward measurement of RNA abundance.

Northern blot also displays the size of small RNAs at

a single nucleotide resolution, allowing the discrimina-

tion of precursor and mature species. The standard

Northern blot procedure has also been adapted in order

to enhance short RNA detection [87, 88]. This adapted

procedure takes advantage of the chemical properties of

known small regulatory RNAs (which all bear a 5′

monophosphate): cross-linking small RNAs to the mem-

brane through their 5′ phosphate, instead of the usual

UV-induced cross-linking all along the small RNA
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sequence, improves RNA accessibility to the probe,

resulting in a better sensitivity.

qRT-PCR: a sensitive technique with specific draw-

backs. RT-PCR-based assays benefit from the great sen-

sitivity of PCR that can even detect miRNAs from single

cell lysate [89]. As miRNAs are too short to accommo-

date a primer pair, specific protocols had to be designed,

where adapter sequences are ligated or polymerized at

each end of the small RNA (reviewed in [90]). An alter-

native, popular method involves a reverse transcription

primer whose short interaction with the miRNA is stabi-

lized by a stem-loop structure (Fig. 3a). The double-

stranded structure of the stem-loop stabilizes the pairing

of the primer to the miRNA, enhancing the stacking

interaction between base pairs. This technique is thus very

sensitive to heterogeneities on the 3′ end of the miRNA

(which are very common in vivo [91]): each primer

detects only one 3′ isoform, thus underestimating the

total amount of the quantified miRNA.

Another issue can bias qRT-PCR-based measure-

ments: the method is frequently used to calculate the rel-

ative amount of the RNA of interest, normalized to a

control RNA [92]. That method simply assumes that both

RNAs are perfectly amplified by their primer pairs during

the analyzed PCR cycles. In fact different primer pairs

will have different amplification efficiency; a small differ-

ence on the value of amplification efficiency can greatly

affect the result of the measurement (Fig. 3b). More

accurate methods have been developed, which estimate

amplification efficiency from the recorded PCR run

(reviewed in [93]).

The extreme sensitivity of RT-PCR may actually

also become its main weakness: unintended RNA species

may exhibit partial complementarity to the primers and

be amplified, resulting in an artifactual qRT-PCR signal.

Such unspecific amplification could explain the apparent

detection of mammalian-specific miR-134 in Xenopus

[94].

Small RNA microarrays. The short size of small

RNAs also causes specific challenges for their quantifica-

tion by microarray that required the development of spe-

cific protocols (see [95] for an extensive review). Cross-

hybridization is a major issue, as many miRNAs are high-

ly similar to each other; introduction of chemically mod-

ified probes (with locked nucleic acid modifications)

allowed high stringency hybridization conditions that

result in highly specific probe signals.

Microarrays can only detect small RNAs whose

probes are present on the array, thus limiting the analysis to

known, targeted RNA sequences. That limitation can be

overturned by the use of custom-made microarrays, whose

probes can tile entire genomic regions (hence detecting

every small RNA originating from these loci, provided that

post-transcriptional maturation does not affect their

sequence): that technique was successfully used to quanti-

fy the expression of piRNAs in Drosophila [96].

Deep sequencing: a high-throughput method for small

RNA identification and quantification. Deep sequencing

cDNA libraries prepared from purified small RNAs

(“small RNA-Seq”) allows the detection of novel,

unknown RNA sequences. In principle, small RNA-Seq

cannot only be used for the identification of small RNA

species, but also for their quantification: the number of

sequenced cDNA reads is so large (typically � 10 millions

on a routine basis nowadays) that many small RNAs can

be read hundreds of times each. These numbers are large

enough to be representative of the abundance of the small

RNA in the analyzed sample.

Technical reproducibility of the small RNA-Seq pro-

cedure can be evaluated by the comparison of technical

replicates: when assessed, replicate-to-replicate correla-

tion was very high ([97], also see Fig. 3c). These experi-

ments showed that the sequencing reaction itself is highly

reproducible.

PITFALLS IN STATISTICAL TREATMENTS

Identification of affected genes is sensitive to the

choice of cutoffs. Classifying affected genes after pertur-

bation of RNA silencing pathways (e.g. after transfecting

or inhibiting a miRNA in cultured cells) is not as

straightforward as it may seem at first glance. Affected

genes are usually identified by the amplitude of their

change in expression and the associated p-value: genes

displaying a fold-change in gene expression above a cho-

sen cutoff, as well as a p-value below a chosen cutoff, are

flagged as “deregulated”. Indeed each criterion alone is

not sufficient to describe the behavior of the gene: the

fold-change may be large, yet the gene is not significant-

ly affected (with a high p-value; this is the case in partic-

ular when replicate values are strongly dispersed); recip-

rocally, the p-value may be small, yet the fold-change

could be modest (hence the gene is hardly affected, even

though that change appears to be significant, i.e. not due

to technical noise). In sum, the fold-change describes

how much the gene is affected, and the p-value measures

the confidence one can have in the measured fold-

change.

Consequently, the identification of affected genes

relies on the choice of these two cutoffs; modifying these

cutoffs will re-define the list of “affected genes”, which

can affect downstream analyses. This concept is illustrat-

ed in Fig. 4a (see color insert), on the data that first estab-

lished the importance of seed matches in the identifica-

tion of miRNA targets at a genome-wide scale: using a

particular cutoff on the p-value (and no cutoff on the

fold-change) Lim et al. [4] noticed that the 3′ UTRs of

miRNA-repressed genes are enriched in seed matches for

the transfected miRNA. Enrichment is sensitive to the

values of the cutoffs, with the most stringent cutoffs (in

terms of fold-change as well as in terms of p-value) yield-
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ing larger enrichments: this observation confirms that

seed match is indeed a good predictor of the affected

genes; it also shows that the most strongly affected genes

are direct miRNA targets (affected genes that do not bear

seed matches are probably under the control of direct

miRNA targets, and the perturbation in gene expression

is attenuated when it is transmitted from direct to indirect

targets, at the analyzed time points).

Comparison of the outcome of a variety of cutoff

values is thus required to ascertain that the chosen values

are not arbitrary, and that the result of downstream analy-

ses is robust to changes in the cutoff.

Criteria for differential expression in an RNA-Seq

experiment. When RNA abundance is quantified by

RNA-Seq (be it a Small RNA-Seq experiment, where

each read is the full-length sequence of a small RNA; or

an mRNA RNA-Seq experiment, where mRNAs are

fragmented before sequencing, then re-assembled com-

putationally), the experimental output is a number of

reads per gene (hence a discrete, “digital” score, in con-

trast with the continuous distribution of microarray sig-

nals for instance).

The significance of deviations in the distribution of a

discrete variable across samples is classically assessed by

Fig. 3. Small RNA quantification methods. a) Stem-loop-primed RT is specific for just one 3′ isoform of the assessed miRNA. Heterogeneity

on the position of the miRNA 3′ end decreases the affinity of the primer for the miRNA, either because of the shortening of the annealed seg-

ment (middle panel) or because of steric hindrance between the miRNA 3′ end and the primer (bottom panel). b) A small error on the esti-

mation of PCR amplification efficiency yields large errors on the estimation of threshold cycle “Ct”. c) NCBI GEO datasets GSM313164 and

GSM313165 are two technical replicates of the same small RNA library (a single cDNA library was prepared from ago2 mutant fly heads and

sequenced twice on the same instrument [46]). Synthetic spiked-in RNAs were excluded from the analysis. Correlation across replicates was

assessed by Pearson’s product moment correlation coefficient (denoted as r). Correlation is very high, even when only the least abundant

RNAs are considered (less than 500 reads in each library; cf inset).
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Fisher’s exact test. That test is very sensitive when the

numbers of counts are large, which is the case in an RNA-

Seq experiment – consequently, most differences will be

flagged “significant” for the most abundant RNAs, even

when the compared samples are biological replicates of

the same genotype and same experimental conditions,

and even when p-values are adjusted for multiple hypoth-

esis testing (Fig. 4b; see color insert).

Hence RNA-Seq is sensitive enough, and Fisher’s

exact test is powerful enough, to detect biological variabili-

ty between individuals (or pools of individuals) of the same

genotype, treated the same way. While this sensitivity is cer-

tainly a good thing in many cases, it also has its downside:

when comparing two different samples (say, a wild-type and

a mutant), a biologist usually wants to identify the genes

that are differentially expressed because of the intended dif-

ference between the samples (here, the genotype) and bio-

logical variability within each genotype is then perceived as

a source of experimental noise, to be ignored.

Sorting out biological variability from the effect of the

intended difference between samples implies two things:

– several biological replicates of each experimental

condition have to be analyzed (in order to estimate the

variability within each group of replicates, and to com-

pare it to the variability between the groups);

– novel statistical methods have to be used to assess

significance, instead of Fisher’s exact test. Several meth-

ods now exist to address that problem: improving the dis-

tribution model for read counts [99]; correcting the dis-

tribution model and adjusting normalization on a gene-

specific basis [100]; correcting the distribution model and

deriving additional descriptive parameters from the actu-

al datasets [101, 102].

KINETICS OF RNA SILENCING

In vitro reconstitution of the RNAi reaction was

achieved as early as 1999, and it allowed a precise investi-

gation of its biochemical process [103]. In vitro, the cat-

alytic rate for the target cleavage reaction falls between

10–3 and 10–2 s–1, with perfectly matched targets being

cleaved faster than mismatched targets [104]. Such

detailed analyses cannot be achieved in vivo, where siRNA

and target concentration is difficult to control. Reports

from various experimental systems indicate that, in the

tested conditions, the RNAi reaction occurs within min-

utes, or tens of minutes, after introduction of a long dou-

ble-stranded RNA trigger. For example in Drosophila

embryos, RNAi-mediated repression of an injected

mRNA is almost fully efficient when the target and the

double-stranded trigger are co-injected, and injecting the

trigger 10 to 30 min prior to target injection hardly

improves RNAi efficiency; and �90% of the target RNA is

degraded within the first 10 min [105]. Translation repres-

sion and small RNA-guided exonucleolytic degradation

(which are the most common modes of action of meta-

zoan miRNAs) could only be recapitulated in vitro more

recently [106-108]. Analysis of these phenomena has

been complicated by the fact that translational repression

and decay are apparently achieved by several mecha-

nisms, whose preponderance depends on the identity of

the Ago protein [109], the sequence and structure of the

miRNA/mRNA duplex [110], and perhaps additional

factors (discussed in [111]). In vitro recapitulation of tar-

get repression (possibly through several of these mecha-

nisms) showed that, with the tested concentration of

miRNA and mRNA, target translation was unaffected by

the miRNA during the first 15 to 20 min, then repression

progressively mounted during the first hour [106, 107].

The chronology of miRNA-guided repression could

also be explored in vivo: early zebrafish development is

particularly suited for these studies, as a single miRNA

(miR-430) constitutes most of the early embryo miRNA

pool (97% of all miRNAs 4 h post fertilization (hpf) and

88% 12 hpf [112]), and its expression begins at a very pre-

cise time point (between 3 and 4 hpf [113]). Analysis of

that model miRNA indicated that target mRNAs are

translationally silenced before they start to be degraded:

target translation is repressed as early as 4 hpf without any

measurable mRNA loss, then mRNA decay is evident at

6 hpf [114].

Such a precise experimental dissection has not been

possible in other systems, but the kinetics of target repres-

sion after introduction of a synthetic small RNA could

also be assessed in cultured cells. It is expected that the

kinetics of the decrease of a target mRNA depends on its

intrinsic half-life; the kinetics of the decrease of a target

protein should also depend on the half-life of the protein

itself – consequently, some heterogeneity is expected

among miRNA targets. For instance, target repression

kinetics can be measured during differentiation of the

C2C12 myoblast cell line into myotubes. These cells start

to express muscle-specific miR-1 and miR-206 between

the first and second days of differentiation. For most test-

ed targets, repression of mRNA abundance is already

maximal on day 2 and repression of protein abundance

takes 2 to 3 more days [115]. Similar kinetics was report-

ed for targets of miRNAs that are upregulated during

mouse ES cell differentiation [116].

The dynamics of target repression can also be fol-

lowed after artificial introduction of synthetic small

RNAs. For example, siRNAs promote the repression of

“off-targets” (mRNAs that exhibit fortuitous seed match-

es to the transfected siRNA; they are thought to be

repressed by the same mechanism as miRNA targets),

whose abundance decreases in a few hours. Jackson et al.

[3] provided the first experimental measurement of off-

target repression, showing that they reach maximal

silencing ca. 20 h after siRNA transfection. Similarly,

when a synthetic small RNA mimicking a natural miRNA

is paired to a passenger strand, the transfected duplex can
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repress genes that exhibit binding sites for the small RNA.

That experiment is not very well suited to identify the tar-

gets of the natural miRNA: only the mRNAs expressed in

that cell type can be assessed, and the transfected con-

centrations can be non-physiological. But the kinetics of

mRNA repression following such an experiment may be

indicative of mRNA repression kinetics, even though the

analyzed mRNAs are not the actual targets.

Transfection of HeLa cells with a synthetic miR-1 or

miR-124 duplex represses dozens of genes within 12 h [4].

Most of these genes are downregulated, and a large frac-

tion of those exhibit seed matches for the transfected

small RNA. Twelve hours later, an even larger set of genes

is affected, including many upregulated genes (and

among downregulated genes, the proportion of seed-

matched RNAs decreases), suggesting that many indirect

targets became affected between 12 and 24 h after trans-

fection (Fig. 5, a and b).

In the reciprocal experiment (where miRNA expres-

sion is constant, but target expression is induced at the

first time point), translational repression also precedes

mRNA degradation [117], though it should be kept in

mind that this experiment does not allow the measure-

ment of the kinetics of target repression – it rather meas-

ures the kinetics of target translation after induction, in

the presence of a repressing miRNA.

Intriguing in vivo observations suggest that miRNA-

mediated regulation could also be much faster: abun-

dance of several miRNAs in mouse retinal neurons is reg-

ulated by light, and the abundance of some miRNAs

respond very rapidly to changes in retina illumination

(maximal reduction in miRNA abundance is achieved in

less than 1 h [118]). Non-retinal neurons also exhibit

rapid miRNA turnover (with maximal miRNA loss being

reached in 2 to 4 h) when their activity is blocked [118].

If this regulation of miRNA abundance has a biological

function, it may suggest that some of their targets are able

to respond with similarly fast kinetics.

AMPLITUDE OF RNA SILENCING

Efficiency of RNAi. Endonucleolytic cleavage of a

target RNA generally reduces target expression more effi-

Fig. 5. Kinetics of direct and indirect targets in a small RNA transfection experiment. The bars show the number of affected genes 12 h (left

bar) or 24 h (right bar) after transfection of miR-1 (a) or miR-124 (b) in HeLa cells [4]. The upregulated genes are shown in black, and the

downregulated genes are shown in gray (with several shades of gray). Among downregulated genes, a variable fraction exhibit seed matches for

the transfected RNA in their 3′ UTR (for some genes, 3′ UTR information was missing, hence their number of seed matches is unknown).
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ciently than translational repression and mRNA exonu-

cleolytic decay [3, 119-121]. Gene silencing by exoge-

nous siRNAs frequently exceeds 80% in cultured cells,

but the efficiency of a given RNAi experiment depends on

many factors: first, as RNAi targets mRNAs, its efficien-

cy depends on target protein stability (if the target protein

is very stable, depleting its mRNA will only slowly trans-

late into a loss of the protein). But RNAi efficiency also

depends on the secondary structure of the targeted

sequence [122-124], siRNA duplex asymmetry (that

determines the relative incorporation of the guide and

passenger strands in mature RISC [33, 34, 125]), and tar-

get mRNA stability [126].

The activity of endogenous siRNAs can also be

measured, comparing target expression in a wild type and

in an RNAi-defective strain. For instance, the mus308

gene in Drosophila is repressed 1-3 times by endogenous

siRNAs [43, 52]. Of note, 5′ RACE experiments (as well

as their high-throughput counterpart, degradome library

sequencing [127]), which are frequently used to demon-

strate that a target RNA is indeed cleaved in vivo, are not

quantitative: detection of a product of the RNAi reaction

does not indicate the proportion of target RNAs that were

actually cleaved [13].

miRNA-mediated repression is modest. Early

description of the effect of miRNAs on target protein

expression suggested that repression of the lin-14 gene by

the lin-4 miRNA was almost complete [128]. But Western

blotting is poorly quantitative, and the effect of lin-4 on

its targets has been precisely quantified only at the level of

mRNA abundance for two targets, revealing a ≈5-fold

reduction [129].

Numerous studies tentatively measured the effect of

miRNAs on target expression, but only a minority did so

by quantifying the effect of the inactivation of miRNAs –

most articles rather over-expressed miRNAs (by trans-

fecting synthetic miRNAs in cultured cells). Transfecting

high doses of miRNA can yield large target repression

values, just because the intracellular miRNA dose is

supra-physiological. Transfecting exogenous small RNAs

can also trigger nonspecific effects by titrating the

endogenous miRNA machinery [130].

The most convincing analyses quantified the effect

of miRNA loss on the proteome. In a pioneer experi-

ment, Nakahara et al. [131] estimated protein abundance

in wild type and dcr-1 mutant oocytes in Drosophila. As

Dcr-1 is necessary for maturation of fly miRNAs, mutant

oocytes are devoid of any miRNA. Bidimensional gel

electrophoresis allowed the identification of differentially

expressed proteins, which were identified by mass spec-

trometry. That study pointed at 41 upregulated proteins in

dcr-1 mutant oocytes (as well as 51 downregulated pro-

teins, which may be indirect targets of oocyte miRNAs),

out of 1003 detected proteins. The presumptive oocyte

miRNA targets were variably upregulated, from 1.6- to

69-fold (with an average fold-change of 3.5). A major

limitation of that analysis is that many of these deregulat-

ed proteins could not be identified by mass spectrometry;

as the experiment was carried out almost one generation

after dcr-1 gene disruption, it is also possible that some of

these deregulated genes are indirect miRNA targets (gene

networks have probably been perturbed by the absence of

miRNAs), perhaps explaining why some of these targets

were not predicted computationally.

Quantitative mass spectrometry provided an efficient

method for simultaneous identification and quantifica-

tion of proteins after perturbation of miRNA abundance.

The SILAC technique consists in metabolic labeling of

the proteins in each sample by different isotopes, fol-

lowed by mass spectrometric analysis. Inhibiting the let-

7b miRNA in HeLa cells, Selbach et al. [6] used SILAC

to show that thousands of genes were repressed (directly

or indirectly) by that miRNA in HeLa, and typical let-7b-

mediated repression ranges from 1 to 1.5, never more

than 2. A similar experiment performed in vivo in mice

mutated for the miR-223 gene revealed that this miRNA

(which is highly expressed in neutrophils) represses

dozens of genes in neutrophils, but once again target

repression is limited (�1.5-fold for most of them [7]).

These high-throughput proteomics experiments also

allowed a direct comparison of computational miRNA

target predictions with experimental results: it turned out

that, among the prediction programs available at the

time, PicTar and TargetScan are the most efficient, yet

≈40-66% of their predicted targets were not significantly

derepressed. These experiments also showed that mRNA

quantification is a reasonable way of identifying miRNA

targets, as most affected genes are repressed both in terms

of protein and mRNA abundance ([6, 7], see also [132]).

This last observation could prove very useful from a prac-

tical point of view, as high-throughput mRNA quantifica-

tion is much more accessible than high-throughput pro-

tein quantification, yet it must be kept in mind that pro-

tein and mRNA regulation do not always correlate after

an experimental perturbation of gene expression [133].

Cell-to-cell variability in miRNA silencing. Recent

technological developments allowed single cell analysis

for a variety of cellular processes. These experiments

revealed cell-to-cell variability among (apparently)

homogeneous cell populations. Two main sources of vari-

ability can be delimited: intrinsic noise in biochemical

processes and deterministic factors [134]. Intrinsic noise

arises from the low number of components involved in

many cellular processes (e.g. for single-copy genes, there

are only two instances of the gene in the nucleus of a cell

in the G1 phase): in these conditions, the law of large

numbers does not apply and the outcome of biochemical

events is submitted to random fluctuations. Deterministic

factors are due to uncontrollable heterogeneities in the

cell population (e.g. all the cells are not in the same phys-

iological state when transfected or analyzed, resulting in

various cellular responses).
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Single cell measurements of RNA silencing revealed

dramatic differences in miRNA abundance or activity.

Estimation of the variability in miRNA abundance in

individual murine ES cells could be achieved by sensitive

single-cell measurement by qRT-PCR. Among 15 indi-

vidual cells, miR-16 abundance varied up to ≈2-fold, and

similar variations were scored among five individual cells

for several other miRNAs [89]. Cell-to-cell variability in

miRNA abundance (as well as, potentially, other sources

of heterogeneity) leads to heterogeneous silencing effi-

ciency: using an internally normalized system (where two

fluorescent proteins are transcribed from the same, bidi-

rectional promoter; one protein is targeted by an endoge-

nously-expressed miRNA while the other protein is not

repressed by the miRNA), Mukherji et al. [135] could

precisely measure miR-20-mediated repression on a sin-

gle cell basis. That experiment revealed a very large vari-

ability in target repression efficiency: cells expressing low

levels of target mRNA silenced them almost completely,

while cells with a higher target expression repressed them

only moderately. When the reporter bears a single bulged

miRNA binding site, cells expressing the lowest levels of

target repressed them ≈5-10 times more than cells

expressing the highest levels.

The physiological bases for this heterogeneity are

still unknown; it has been proposed that the heteroge-

neous association of mitochondria with P-bodies (where

miRNA-target mRNAs accumulate) could contribute to

the cellular heterogeneity in silencing efficiency [136].

miRNA DIVERSITY AND SO-CALLED

“ORGANISMAL COMPLEXITY”

Several authors have claimed that the number of

miRNA genes (or, more generally, the number of non-

coding genes) correlates positively with organismal com-

plexity [137-139]. Indeed, the acquisition of a few addi-

tional regulators, which can act in combination, creates

an incommensurably large variety of available regulatory

networks – for a limited cost in terms of genetic innova-

tion [140].

Yet the premises of this argumentation do not rely on

the most objective observations. Before “complexity” can

be correlated to anything, it needs to be quantified (then

the correlation between the measurement of complexity,

and the number of miRNA genes, can be assessed by statis-

tical means). Unfortunately, many authors do not try to

quantify complexity, they do not even attempt to define it –

rather, it is often postulated that some species are more

complex than others (e.g. vertebrates would be more com-

plex than insects) without further definition or justification.

More convincingly, several complexity scores have

been proposed that aim at quantifying organismal com-

plexity [141, 142], yet these scoring systems are based on

the presence or absence of an arbitrary list of characters,

which all turn out to be found in vertebrates (presence of

a urogenital system, of a skull, number of neurons in the

organism, ...). The fact that vertebrate species are

assigned a high score in such a scheme is tautological, and

hardly informative.

Another, more objective method relies on the esti-

mation of the diversity of cell types in each species [143,

144]. A major technical challenge in that approach is that

a “cell type” is not rigorously defined, and ultimately

depends on morphological criteria, assessed by the spe-

cialists of each analyzed species – hence, different phyla

are scored by different observers [144]. Quantifying cell

types also faces a more profound limitation: differentiat-

ed cells in a multicellular organism originate from the fer-

tilized egg, through cell division and differentiation.

Differentiation is a continuous process, hence the defini-

tion of each differentiation intermediate depends on arbi-

trary cutoffs, and the number of recorded cell types can

vary from 1 (when every step of the differentiation process

is seen as a different metabolic state of the same cell type)

to an infinity (when each small difference is considered to

define a new cell type).

While no convincing method has been proposed to

measure “complexity” of a species, “evolution” of a

species can be much more precisely and objectively

defined: every living species apparently derives from the

same ancestor (dubbed LUCA, for Last Universal

Common Ancestor; see [145] for a review). The “evolu-

tion” of a species can be measured by its evolutionary age;

as every modern-day species have the same starting and

ending points, they all have the same evolutionary age,

i.e. they would be equally evolved. From this point of

view, the number of miRNA genes did increase with evo-

lution (when the miRNA machinery first appeared), but

the most evolved species exhibit a wide diversity of

miRNA gene number, ranging from 0 (for current organ-

isms devoid of miRNAs) to at least several hundreds bona

fide miRNA genes [41].

CONCLUSION

Small regulatory RNAs exhibit several features that

distinguish them from other gene regulators. First, the

large diversity of siRNA and piRNA sequences exceeds

that of any other known class of regulators, and even the

diversity of coding genes, raising intriguing questions on

the specificity of their biological roles. Second, all three

classes were discovered recently: the first miRNA was dis-

covered in 1993 and the diversity of miRNAs was recog-

nized only in 2001 [35-37, 146]. piRNAs and endogenous

siRNAs were discovered during the 2000-2010 decade

(reviewed in [1]). Discovery of these regulators coincided

with the development of high-throughput techniques for

the detection and quantification of small RNAs and their

targets, rapidly translating into a high-throughput, quan-
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titative assessment of their molecular functions. It took

several decades after the discovery of transcription factors

before their mode of action could be probed at such a

high resolution – in fact, the poor specificity of most

transcription factors (with binding sites defined by short

DNA sequence motifs [147]) probably means that each of

them also controls hundreds or thousands of genes, as

illustrated by recent high-throughput experiments (e.g.

[148]). While these notions probably mean that a wide

paradigm shift is expected in our perception of the role of

transcription factors, they have always been familiar to

the small RNA community [149].

Yet several key quantitative questions still deserve

more attention. Factors controlling the abundance of

miRNAs (regulation of transcription, processing, and

stability) have been analyzed at a small scale, following

serendipitous discoveries. These questions have hardly

been touched for siRNAs and piRNAs. Regarding their

biological function, several worrying issues still await a

clear answer. In particular, the modest effect of miRNAs

on their predicted targets (smaller than well-tolerated

fluctuations in gene expression) apparently implies that

most of these targets are not repressed enough to be func-

tionally affected – suggesting that the interaction

between miRNAs and their targets has been misunder-

stood [150]. Fortunately, powerful analysis techniques

and sophisticated statistical procedures are being devel-

oped, allowing a rigorous measurement of the regulatory

effect of small RNAs.
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Fig. 2. (A. M. Sergeeva et al.) Genomic distribution of small RNA genes. a) Diversity of the genomic distribution of miRNAs in metazoans.

Numbers in the colored sectors indicate the number of pre-miRNAs falling in each category (pre-miRNA genomic coordinates are from

miRBase release 19, dated August 2012; genomic coordinates for pre-mRNAs and their exons are from the UCSC Genome Browser, using

genome assemblies BDGP R5 for D. melanogaster, WS220 for C. elegans, and GRCm38 for M. musculus). b) Percentage of transposable ele-

ment (TE)-matching reads in deep-sequencing piRNA libraries. Drosophila melanogaster data was extracted from the NCBI GEO datasets

GSM154620, GSM154621, and GSM154622 [17]. Mus musculus statistics are from [85] (for pachytene piRNAs), [86] (for pachytene Mili-

associated piRNAs), and [75] (for pre-pachytene Mili-associated piRNAs). “Whole genome” indicates the percentage of genomic sequence

covered by transposable elements or repeats.

a

b
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Fig. 4. (A. M. Sergeeva et al.) Issues with statistical treatment of high-throughput datasets. a) Lim et al. [4] performed the first high-through-

put assessment of the importance of seed matches in miRNA target identification (quantifying mRNA expression in HeLa cells following miR-

1 or miR-124 transfection). With a cutoff of 0.001 on the p-value and no cutoff on the fold-change (hence, a cutoff of 1), thousands of genes

were affected, and ≈80 to 90% of their 3′ UTRs contained seed matches for the transfected miRNA. These values range from less than 50 to

100% with alternative cutoff values. b) NCBI GEO datasets GSM984201 and GSM984202 are two biological replicates of Drosophila

melanogaster first instar larva small RNAs from the modENCODE project. Each point represents an individual small RNA. Their spreading

around the diagonal indicates differences in abundance across the two replicates. For most small RNAs, these differences appear significant

according to Fisher’s exact test (red points on the right panel), even after correction for multiple hypothesis testing with the Bioconductor

qvalue package [98] (filled red points).
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