2Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; E-mail: tangyx@mail.caas.net.cn
* To whom correspondence should be addressed.
Received November 16, 2007; Revision received February 22, 2008
MYB genes are widely distributed in higher plants and comprise one of the largest transcription factors, which are characterized by the presence of a highly conserved MYB domain at their N-termini. Over recent decades, biochemical and molecular characterizations of MYB have been extensively studied and reported to be involved in many physiological and biochemical processes. This review describes current knowledge of their structure characteristic, classification, multi-functionality, mechanism of combinational control, evolution, and function redundancy. It shows that the MYB transcription factors play a key role in plant development, such as secondary metabolism, hormone signal transduction, disease resistance, cell shape, organ development, etc. Furthermore, the expression of some members of the MYB family shows tissue-specificity.
KEY WORDS: MYB transcription factors, classification, secondary metabolism, multi-functionality, signal transductionDOI: 10.1134/S0006297909010015