[Back to Issue 7 ToC] [Back to Journal Contents] [Back to Biochemistry (Moscow) Home page]
[View Full Article] [Download Reprint (PDF)]

REVIEW: Mechanisms of Angiogenesis


A. F. Karamysheva

Institute of Carcinogenesis, Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Kashirskoe Shosse 24, 115478 Moscow, Russia; fax: (495) 324-1205; E-mail: aikaram@yandex.ru

Received December 26, 2007
Tissue activity of angiogenesis depends on the balance of many stimulating or inhibiting factors. The key signaling system that regulates proliferation and migration of endothelial cells forming the basis of any vessel are vascular endothelium growth factors (VEGF) and their receptors. The VEGF-dependent signaling system is necessary for formation of the embryonic vascular system. Neoangiogenesis during tumor growth is also associated with activation of this signaling system. The biological significance of the effect of such system on the cells depends on the content in tissue of various factors of the VEGF family and their receptors, while in the case of VEGFA it is defined by the ratio of different isoforms of this growth factor. A number of other signaling systems are also involved in regulation of the main steps of vessel formation. The signaling system Dll4/Notch regulates selection of endothelial cells for beginning of angiogenic expansion by endowing particular properties to endothelial cells leading in this process. An important step in vessel stabilization and maturation is vascular wall formation. Signaling system PDGFB/PDGFRbeta as well as angiopoietins Ang1, Ang2, and their receptor Tie2 are involved in recruiting mural cells (pericytes and smooth muscle cells). Identification of key molecules involved in the regulation of angiogenesis may provide new possibilities for development of drugs suitable for inhibition of angiogenesis or its stimulation in various pathologies.
KEY WORDS: angiogenesis, vascular endothelium growth factors (VEGF), neuropilins, PDGFB, angiopoietins

DOI: 10.1134/S0006297908070031