2Montana State University, Bozeman, MT 59717, USA
* To whom correspondence should be addressed.
Received June 20, 2007; Revision received July 9, 2007
The exposure of Bacillus cereus ZS18 cell suspensions to 2,4,6-trinitrotoluene (TNT) in the absence of other oxidizable substrates increases oxygen uptake, exceeding the basal level of respiration of the bacterium 1.5- and 2-fold with 50 and 100 mg/liter of TNT, respectively. The interaction of both living and to less extent dead bacterial cells with TNT results in the accumulation of superoxide anion (O2*-) in the extracellular medium, which was revealed by the EPR spectroscopy. The accumulation of O2*- decreased by 50-70% in the presence of Cu,Zn-superoxide dismutase of animal origin. In the presence of living bacterial cells, the level of TNT decreased progressively, yielding hydroxylaminodinitrotoluenes together with O2*-. In the presence of heat-killed cells, a moderate decrease in TNT was observed, and the appearance of O2*- was not accompanied by the production of any detectable TNT metabolites. Chelating agents inhibited the transformation of TNT and decreased the formation of O2*-. The demonstrated generation of O2*- during the interaction of TNT with K4[Fe(CN)6] together with the observed effects of chelating agents suggest the participation of iron in the one-electron reduction of TNT and the functioning of an extracellular redox cycle with the involvement of molecular oxygen.
KEY WORDS: 2,4,6-trinitrotoluene, aerobic transformation, superoxide anionDOI: 10.1134/S0006297908040123