* To whom correspondence should be addressed.
Received January 23, 2006; Revision received February 21, 2006
Ion-exchange properties of the polymeric matrix of cell walls isolated from roots of 55-day-old Spinacia oleracea L. (Matador cv.) plants grown in nutrient solution in the presence of 0.5, 150, and 250 mM NaCl and from roots of Suaeda altissima L. Pall plants of the same age grown in the presence of 0.5 and 250 mM NaCl were studied. The ion-exchange capacity of the spinach cell walls was determined at pH values from 2 to 12 and different ionic strength of the solution (10 and 250 mM NaCl). In the structure of the root cell walls, four types of ionogenic groups were found: amine, two types of carboxyl (the first being galacturonic acid residue), and phenolic groups. The content of each type of group and their ionization constants were evaluated. The ion-exchange properties of spinach and the halophyte Suaeda altissima L. Pall were compared, and the qualitative composition of the ion-exchange groups in the cell walls of roots of these plants appeared to be the same and not depend on conditions of the root nutrition. The content of carboxyl groups of polygalacturonic acid changed in the cell walls of the glycophyte and halophyte depending on the salt concentration in the medium. These changes in the composition of functional groups of the cell wall polymers seemed to be a response of these plants to salt and were more pronounced in the halophyte. A sharp increase in the NaCl concentration in the medium caused a decrease in pH in the extracellular water space as a result of exchange reactions between sodium ions entering from the external solution and protons of carboxyl groups of the cell walls. The findings are discussed from the standpoint of involvement of root cell walls of different plant species in response to salinity.
KEY WORDS: Spinacia oleracea, Suaeda altissima, cell wall polymeric matrix, ionogenic groups, ionization constant, salinityDOI: 10.1134/S000629790607011X