
When studying biological subjects such as an entire

organism, individual living cell, or isolated biochemical

reaction, we deal with complex systems. The convention�

al scheme of construction of integral models of complex

systems involves the following stages: 1) extraction of

simple subsystems (processes) in the system (phenome�

non) under study; 2) experimental establishment of the

functional relationships between the separate subsystems

in studies of fragments of the original system; 3) “assem�

bly” of the integral model, the use of numerical and ana�

lytical methods of simulation modeling for checking the

completeness and adequacy of the relationships estab�

lished at the second stage.

It should be noted that this scheme is operative only

in the cases when the fragments of the original system can

be experimentally isolated with no irreversible change of

their properties. However such a possibility is not consis�

tently realized. For example, deviations from the hyper�

bolic law are observed in studies of the dependence of the

enzymatic reaction rate on the substrate concentration

[1]. The kinetic anomalies may be due to the complicated

mechanism of the enzymatic process: nonequivalence of

the substrate�binding sites or interactions between the

substrate�binding sites in the molecule of oligomeric

enzyme or heterogeneity of the enzyme preparation when

the latter contains forms (including oligomeric forms)

differing in the catalytic properties [2]. Besides, many

biochemical reactions proceed with the formation of a

broad spectrum of intermediates.

Choosing between the mechanisms proposed for

explanation of the observed kinetic anomalies is often a

challenging task. Therefore, empiric equations proposed

for description of the kinetics of enzymatic reactions

remain popular among enzymologists [3, 4]. Thus, even

when studying separate enzymatic reactions, explorers

run into a non�trivial problem in isolation of simple sub�

systems. As for the cascades of biochemical reactions

accompanying, for example, apoptosis [5] or blood coag�

ulation [6], the problem here is worse.

In the present paper we have elaborated a new

method of identification of the systems. This method

allows us to construct the mathematical models of com�

plex (multiparametric) nonlinear phenomena, i.e., the

phenomena typical of biological systems, without experi�

mentally exploring separate fragments of the original sys�

tem.
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In other words, to construct an integral model of the complex system (phenomenon), it is enough to collect some data array

characterizing the time�course of dynamical parameters of the system. Collection of such a data array has always been a prob�

lem. However difficulties emerging are, as a rule, not principal and may be overcome almost without exception. The poten�

tialities of the method under discussion are demonstrated by the example of the test problem of multiparametric nonlinear

oscillator identification. The identification method proposed may be applied to the study of different biological systems and

in particular the enzyme kinetics of complex biochemical reactions.
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System identification is a relatively new line of theo�

retical investigations evolved at the interfaces between

mathematics, physics, and cybernetics (control theory).

A set of methods used for system identification is very

wide, namely from the simplest statistical and spectral

methods to the methods of identification of multipara�

metric nonlinear dynamic systems.

It should be noted that system identification as a

line of scientific investigations was developed under the

influence of the problems of technical system control.

However some methods of system identification

became useful for experimenters. A number of the

methods of system identification are widely used by

biochemists for analysis of the kinetics of enzymatic

reactions, the most�used methods being the graphic

method ([7], pp. 695�699) and Prony’s method [8]. In

short we can say that these methods and other methods

applied for the study of the kinetics of the enzymatic

reactions ([7], pp. 372�375) allow only linear or asymp�

totically linear systems to be analyzed. However, most

enzymatic reactions are described by systems of nonlin�

ear differential equations. Therefore, the experimenter

should choose the conditions of the experiment so that

the system is linearized (for example, by using high

concentrations of one of the reactants) or study reac�

tions differing greatly in the rates. In the last case

(according to the Tikhonov theorem ([7], pp. 707�708)

the number of degrees of freedom of the system to be

identified can be reduced.

Many specialists in the field of system identification

believe that “nonlinear problem of prediction (identifi�

cation) has no finite�dimensional solutions with the

exception of particular cases” [9]; it is thought that ana�

lytical solutions are lacking. Using the numerical meth�

ods for nonlinear problem is confined by the technical

potentialities of computers. Therefore, planning of

experiments includes only models with a small number

of parameters.

The method elaborated in the present paper allows

the solution of identification problem in an analytical

form to be obtained for a variety of nonlinear systems.

The problem is reduced to the solution of a system of lin�

ear equations [10, 11]. It should be noted that there are

quick numerical algorithms for solution of the system of

linear equations.

Experiments in studies of the kinetics of the enzy�

matic reactions are carried out, as a rule, with regard to

the corresponding methods of treatment of the results of

measurements. Therefore, the method of system identifi�

cation proposed by us allows a new class of experiments

with a great number of reactants to be designed. One can

expect that the application of this method will permit the

range of the biochemical problems accessible to investi�

gation to be expanded and a higher accuracy of determi�

nation of the kinetic parameters for complex biochemical

reactions to be obtained.

STATEMENT 

OF THE IDENTIFICATION METHOD

Consider the class of nonlinear dynamic models rep�

resented by the system of differential equations in the

Cauchy explicit form with a quadratic right part:

dXi (t) N
_____

= Σ ai
j
1

j
2 Xj

1
(t) Xj

2
(t) ,                    (1)

dt j1 � j2 = 0

where Xi(t) is a set of dynamic parameters of the phenom�

enon under study (i = 0, ..., N), ai
j
1

j
2 are the constants of

the dynamic model (j1 ≤ j2 = 0, ..., N).

It should be noted that the addition of the formal

parameter X0(t) ≡ 1 to the set of dynamic parameters Xi(t)

in model (1) allows us to pass on to the Cauchy system

with the quadratically linear right part. Equality ai
j
1

j
2 ≡ 0

provides a consistency of the (N + 1)�dimensional model

with additional formal parameter X0(t) ≡ 1. Introduction

of an additional formal parameter is a convenient tech�

nique that allows the form of the original model to be

simplified and standardized. Such a technique be useful

also for generalization of the identification method under

discussion to the cases of models represented by a system

of differential equations in Cauchy form with arbitrary

polynomial right part.

The class of the quadratic (quadratically linear)

models is only a particular case of the more general

class of polynomial models, the latter in turn are a par�

ticular case of nonlinear models with arbitrary piece�

wise continuous right part. Nevertheless, it is possible

to describe a broad spectrum of phenomena in nonlin�

ear systems in the frames of quadratic (quadratically

linear) models.

When discussing biochemical problems, we should

take into account that monomolecular chemical reac�

tions (first�order reactions) are described by linear terms,

whereas quadratic terms are introduced for description of

bimolecular reactions (second�order reactions). It should

be noted that “reactions of the third order (trimolecular

reactions) are extremely rare in occurrence” ([7], p. 21).

Therefore, the quadratic model (1) may be thought of

describing the general case of the cascade of simple bio�

chemical reactions. Moreover, since any complex reac�

tion is eventually a set of simple reactions, the general

case of a cascade of complex biochemical reactions may

be also described in the frames of model (1).

In contrast to the direct problem of modeling, the

problem of identification (or the inverse problem of mod�

eling) is the determination of the constants of the dynam�

ic model ai
j
1

j
2 on the basis of the known time�depen�

dences of dynamic parameters Xi(t).

The set of the constants of the dynamic model ai
j
1

j
2

is determined from the condition of minimization of

quadratic discrepancy functional for the concrete realiza�
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tion of the time�dependence of the dynamic parameter

set of the phenomenon under study Xi(t):

N t2

dXi (t)
N

Ф(ai
j
1

j
2) = Σ ∫dt (_____

– Σ ai
j
1

j
2 Xj

1
(t) Xj

2
(t))

2

.       (2)
i = 1  t1

dt j1 � j2 = 0

It is easy to show (see “Appendix”) that the constants

of the dynamic model ai
j
1

j
2 providing the minimum of

functional (2) can be calculated as follows:

N(N + 1)/2

a k
i = Σ cil b*lk .                                (3)

l = 0

Here a k
i = ai

j
1

j
2 is a desired set of constants of the

dynamic model, b*lk are the elements of matrix, which is

inverse with respect to matrix {bml}. According to the def�

inition Σ b*lk bml = δ k
m 

:
l

t2

bml = bj
1

j
2

j
3

j
4

= ∫ (Xj
1

(t) Xj
2

(t) Xj
3

(t) Xj
4

(t)) dt ,           (4)
t1

t2

dXi (t)
cil = ci j

3
j
4

= ∫ (
______ Xj

3
(t) Xj

4
(t)) dt .                 (5)

t1
dt 

The transition from indices j1, j2, j3, j4 to indices k, l,

m is a procedure of renumbering indexed variables in

accordance with the algorithm of direct product of multi�

tudes (see “Appendix”, item 2). This allows the system of

linear equations to be written and solved using standard

program packages (for example, MATLAB 6.1).

As can be seen, the problem of identification of the

original nonlinear model (1) in the frames of the criterion

of quadratic discrepancy minimization (2) has a simple

analytical solution (3)�(5).

In the case of biochemical problems the constants of

the dynamic model ai
j
1

j
2 can be interpreted as the con�

stants of the biochemical reactions. Dynamic parameters

of the phenomenon under study Xi(t) are concentrations

of reactants including the concentrations of intermediates.

Thus, to construct the integral model (1) of the com�

plex system (phenomenon), it is necessary to obtain some

data array (to a sufficient degree of specification) charac�

terizing the time�dependent change in parameters Xi(t) of

the system (phenomenon). Obtaining such a data array

has always been a problem. However, difficulties emerg�

ing are preferentially of a technical character and can be

almost without exception surmounted.

Consider in more detail the application of the

method proposed by us to the description of a concrete

biochemical reaction, namely the ligand–receptor inter�

action. Since the description of the model of the simple

receptor binding presents no special problems ([7], p.

342), it is of interest to discuss more complex

ligand–receptor interaction taking into account the

processes of degradation of ligands (degradation by

enzymes) and internalization (exocytosis) of receptors,

ligands, and ligand–receptor complexes. The changes in

the concentration of ligands and receptors may be pre�

sented by the following scheme [12]:

,

where L is ligand, R is receptor, LR is the complex of

ligand with receptor, and k+1 and k–1 are the rate con�

stants for the formation and breakdown of the lig�

and–receptor complexes. The products of degradation

or internalization of the corresponding component are

designated by an asterisk. The scheme includes the fol�

lowing stages: degradation of the ligand (with the rate

constant kL), internalization of free receptors (kR),

internalization of the ligand–receptor complexes (kc1),

internalization of the receptor (kc2), and internaliza�

tion of the ligand from the ligand–receptor complexes

(kc3).

The law of conservation of matter is written as fol�

lows:

(6)

It should be noted that the similar system of differ�

ential equations has no analytical solution. However the

system allows the investigations to be carried on in the

frames of the proposed method of identification. For this

purpose consider in more detail the transition to univer�

sal designations used in the present paper.

The following designations are used:

X1 (t) = [L], X2 (t) = [R], X3 (t) = [LR] .              (7)

To describe the linear terms, the additional variable

X0(t) ≡ 1 is introduced. The system of equations (6)

acquires the following form:
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The matrix of the constants of the dynamic model

{ai
j
1

j
2}(j1 ≤ j2 = 0, ..., 4) where index i corresponds to the

number of equation in the system of equations (4), j1 are

matrix rows, and j2 are matrix columns is written as follows:

(9a)

(9b)

(9d)

It should be noted that a triangular shape of matrix

(9) (ai
j
1

j
2 = 0 at j1 > j2) allows ambiguity in determination

of the matrix coefficients to be avoided.

Thus, with the designations (7)�(9) the system of

equations (6) can be put in form (1) at N = 3. When the

time�dependent changes in the concentrations of reac�

tants are known, substitution of the corresponding values

into expressions (4) and (5) allows the numerical values of

the matrix coefficients ai
j
1

j
2 to be obtained. The latter may

be used for determination of the rate constants for the

concrete chemical reactions: kL, kR, k+1, k–1, kc1, kc2, kc3.

TEST PROBLEM OF IDENTIFICATION 

OF MULTIPARAMETRIC NONLINEAR 

OSCILLATOR

Consider the application of method under discussion

by the example of the test problem of identification of

nonlinear oscillator with three degrees of freedom:

N�dimensional quadratically linear model (N = 3)

,            (10a)

(N + 1)�dimensional quadratic model (N = 3)

(10b)

As noted above, parameter X0(t) ≡ 1 is introduced to

put the right part of Eq. (10b) in form (1). Therefore, this

parameter cannot be considered as an additional degree

of freedom.

It is easy to show that at k → ∞ the systems of equa�

tions (10a) and (10b) describe the standard Van der Pol

oscillator.

Table 1 gives the matrix of the constants of the

dynamic model ai
j
1

j
2 (at k = 1) for putting the equation

system (10b) in the form of evolution equation (1) where

index i corresponds to the number of the equation and

indices j1, j2 correspond to the numbers of dynamic

parameters Xi(t).

The testing of the method is conducting in several

steps. In the first step we obtain the solutions of the sys�

tem (10b) over some time interval (from 0 to 20) using

Runge–Kutta method (altogether P = 157 values) and

consider them as dynamic parameters of the system under

study Xi(t) (figure, panel (a)).

In the second step we consider the constants of the

dynamic model ai
j
1

j
2 as unknown magnitudes and try to

reconstruct their values in accordance with formulae (3)�

(5). Designate the reconstructed values as ~ai
j
1

j
2. We com�

(8)

,    (9c)
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a 0

j1 j2

0  0  0  0

0  0  0  0

0  0  0  0

0  0  0  0

a 1

j1 j2

0  0  1 0  

0  0  0  0  

0  0  0  0  

0  0  0  0

a 3

j1 j2

0        0        0      –1

0        1 0        0 

0        0        0         0 

0        0     0      0

a 2

j1 j2

0      –1        1 0 

0         0        0        0 

0        0        0     –1

0         0        0        0

Table 1. The exact values of the constant matrix of the dynamic model {ai
j
1

j
2} for the system of equations (10b) (i is the

number of the equation, j1 are the matrix rows, j2 are the matrix columns)

Time�dependence of the dynamic parameters Xi(t) (i = 0, …, 3) obtained by the solution of the system of equations (10b) at k = 1 in the

absence of the noise component (a) and with noise S = 0.06 (b)

X
i
(t

)

3

2

1

–1

0

a

2 4 6 8 10

0

–2

–3
12 14 16 18 20

t

X0 (t)

X3 (t)

X2 (t)
X1 (t)

X
i
(t

)

2

1

–1

0

b

2 4 6 8 10

0

–2

–3
12 14 16 18 20

t

X0 (t)

X3 (t)

X2 (t) X1 (t)

3

~a 0

j1 j2

–0.08   0.07   –0.02      0.10 

0        0.02   –0.01   –0.06 

0        0           0.03      0.03 

0        0           0        –0.07

~a 1

j1 j2

0.10   –0.11     1.04 –0.17 

0           0.03   –0.04     0.08

0           0    –0.00  –0.00 

0           0           0          0.05

~a 3

j1 j2

0.02   –0.02   –0.03  –1.04

0          0.97 0.03     0.02 

0         0       –0.02     0.02 

0           0     0      0.04

~a 2

j1 j2

–0.05  –0.94     0.92 0.06 

0          0.02  –0.00  –0.01 

0        0          0.01 –0.92

0          0          0       –0.04

Table 3. Reconstructed values of the constant matrix of the dynamic model {~ai
j
1

j
2} (the noise amplitude S = 0.06, the

number of the experimental values Xi(tp): P = 157)

~a 0

j1 j2

0.00    0.00    0.00   0.00 

0         0.00    0.00   0.00 

0         0         0.00   0.00 

0         0         0        0.00

~a 1

j1 j2

0.00   –0.00   0.99 –0.00 

0        –0.00   0.00      0.00 

0           0    –0.00  –0.00 

0           0        0           0.00

~a 3

j1 j2

–0.00   –0.00     0.00  –1.00

0          0.99 –0.00  –0.00 

0         0          0.01  –0.00 

0           0     0      0.00

~a 2

j1 j2

–0.00  –0.99     0.98 –0.01 

0          0.00  –0.00     0.00 

0        0          0.00 –0.98

0          0          0          0.00

Table 2. Reconstructed values of the constant matrix of the dynamic model {~ai
j
1

j
2} (the noise amplitude S = 0, the

number of the experimental values Xi(tp): P = 157)
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pare the ~ai
j
1

j
2 values obtained by the identification

method under discussion (Table 2) with the exact values

ai
j
1

j
2 (Table 1). As can be seen, the agreement is very

good: the error does not exceed 2%.

Consider the application of the method in circum�

stances where we must reckon with noise. Table 3 shows

the reconstructed ~ai
j
1

j
2 values for the model with the noise

component having the amplitude of S = 0.06 (figure,

panel (b)). When the numerical experiment was carried

out, the noise component was added not only to dynam�

ic parameters of the system Xi(t) (i ≠ 0), but also to the

formal parameter X0(t). By its variation from zero ~a0
j
1

j
2

serve as a characteristic of measuring inaccuracy. The val�

ues of the constants of the dynamic model were obtained

with a sufficiently high accuracy. In spite of high level of

noise, the average error in determining the ~ai
j
1

j
2 values

does not exceed 10%. The accuracy in determining the

matrix elements {~ai
j
1

j
2} rises as the number of the experi�

mental points P increases.

The method of system identification proposed in the

present paper may be easily generalized to a broader class

of nonlinear models described by the system of differen�

tial equations in the Cauchy form with arbitrary piecewise

continuous nonlinear right part (not necessarily quadrat�

ic or polynomial).

Further development of the method is connected

with application of its concrete modifications for a broad

class of special problems of biology and medicine, in par�

ticular biochemical problems, which are now solved by

the standard methods using exponential models and

asymptotic approximations (for example, graphic method

and Prony’s method). The advantage of the method is to

allow substantially more complex reactions to be studied.

An important feature of the method is its applicabil�

ity to analysis of biochemical systems not possessing an

asymptotic behavior. As indicated above by the example

of identification of parameters for the of oscillator of the

Van der Pol type, the method may be successfully applied

for description of the behavior of stochastic models and

self�oscillating systems, such as the well�known

Belousov–Zhabotinsky reaction [13] or phenomenon of

oscillations of receptor binding ([7], pp. 491�495).

The method is of importance for developing the

quantitative models of aging, pathological processes, and

systemic diseases accompanying aging and also for elabo�

rating the optimal programs of therapy taking into

account the individual peculiarities of a patient.

Recent technical achievements in carrying out bio�

chemical experiments open up new fields of the applica�

tion of the method under discussion. In particular, EPR�

and NMR�spectrometry provide continuous recording of

the time�depended changes in the concentrations of a

large number of reactants and intermediates.

The authors are ready to cooperate and can provide

a useful guide to set up a problem as well as to analyze the

data obtained.
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APPENDIX

1. The set of the constants of the dynamic model

ai
j
1

j
2 is determined from the condition of minimum of

quadratic discrepancy functional Ф (ai
j
1

j
2)

and essentially corresponds to the “best” description of the

experimentally measured dynamic parameters of the system

Xi(t) in the frames of the standard criterion of the least�squares

method. To obtain the concrete expression for Ф (ai
j
1

j
2), we

can use the condition of the extremum (minimum) of func�

tional, i.e., equality to zero for the partial derivatives of func�

tional Ф (ai
j
1

j
2) with respect to variable parameters ai

j
1

j
2:
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Changing the order of integration and summation, we get

the following expression:

Introduce the following designations:

where i = 0, ..., N; j1 ≤ j2 = 0, ..., N; j3 ≤ j4 = 0, ..., N. The

expression for the constants of the dynamic model ai
j
1

j
2

providing the extremum of quadratic discrepancy may be

written in the form:

To put expression obtained in the standard form of

the system of linear equations, the elements of the arrays

should be renumbered in accordance with the algorithm

of direct product of multitudes (see below): bkl = bj
1  

j
2

j
3  

j
4 

,

cik = ci j
1

j
2
, and (k ↔ j1 ⊗ j2; l ↔ j3 ⊗ j4; j1 ≤ j2; j3 ≤ j4):

Thus, we get aggregate of N systems of linear equations

(index i). Each of the systems is a system of linear equa�

tions of rank N(N + 1)/2 for a l
i . The solution has the stan�

dard form:

Here b*lk are the elements of the matrix, which is inverse

to matrix {bml}, or, by definition:  

The ai
j
1

j
2 values may be finally reconstructed by applica�

tion of a renumbering procedure, which is inverse to the

procedure used above for renumbering the elements of

the arrays bkl = bj
1  

j
2  

j
3  

j
4

, cik = ci j
1  

j
2

, and (k ↔ j1 ⊗ j2; l ↔ j3 ⊗
j4; j1 ≤ j2; j3 ≤ j4), to a l

i values obtained.

2. Operation ⊗, for example, (k ↔ j1 ⊗ j2; j1 ≤ j2), is

a procedure of the renumbering of the elements of the

array in accordance with the algorithm of the direct prod�

uct of multitudes. Consider, for example, the two�dimen�

sional array ai
j
1

j
2 and corresponding one�dimensional

array ak where to every element of the two�dimensional

array ai
j
1

j
2 (j1 ≤ j2) corresponds one element of the one�

dimensional array ak, and one element only. Such a cor�

respondence specifies the display where to every pair of

the values of the indices j1, j2 (j1 ≤ j2) corresponds one

value of the index k, and one value only. It should be

noted that the different concrete realizations of such a

display can be used. One of the possible realizations is the

following:

j1/j2 1 2 3 4 ...

1 a1 a2 a4 a7 ...

2 0 a3 a5 a8 ...

3 0 0 a6 a9 ...

4 0 0 0 a10 ...

… ... ... ... ... ...

It should be noted that the condition j1 ≤ j2 is neces�

sary for avoiding ambiguity in evaluating the constants of

the dynamic model ai
j
1

j
2.
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