* To whom correspondence should be addressed.
Received June 25, 1999; Revision received July 22, 1999
The effects of 3,4-dimethoxyphenyl-1-amylketone (DPK) on the CoQ-dependent stages of the electron transport systems in mitochondria and Rhodobacter sphaeroides chromatophores were studied. The two systems contain the complete Q-cycle. The sensitivities of the Q-cycles of two electron transport systems to antimycin, myxothiazole, and other inhibitors are virtually indistinguishable from one another, but these systems have different CoQ reduction processes. The dependence of the inhibition extent of the mitochondrial succinate oxidase on the DPK concentration was studied. The effective concentration of DPK is 0.5-2.5 mM. The presence of the point of inflection in the titration curve indicates that there are two mechanisms of inhibition. The effects of DPK on the extent of reduction of cytochromes b and c1 + c in mitochondria as well as on the electrogenic stages of the Q-cycle in chromatophores were examined. The experiments showed that DPK prevents three CoQ-dependent reactions related to the Q-cycle: electron transport between succinate dehydrogenase and the Q-cycle in mitochondria and functioning of the Z (o) and C (i) sites of the Q-cycle in chromatophores. DPK does not affect the electrogenic reaction associated with protonation of the secondary quinone acceptor QB in the reaction center of chromatophores. The mitochondrial NADH-dehydrogenase is inhibited by DPK at lower but comparable concentrations (C50 = 0.2 mM).
KEY WORDS: mitochondria, succinate dehydrogenase, NADH-dehydrogenase, bc1 complex, Q-cycle, inhibitor 3,4-dimethoxyphenyl-1-amylketone, Rhodobacter sphaeroides chromatophores